دلایل انجام فتوسنتز در کلروپلاست :

دلایل انجام فتوسنتز در کلروپلاست :

1: فتوسنتز باید در محیط سربسته ای صورت گیرد تا مواد حدواسط چرخه کالوین از محل انجام فتوسنتز خارج نشوند.

کلروپلاست با داشتن غشاء مخصوص خود که تقریباً غیر قابل نفوذ است این خاصیت مهم را دارد.

2: عمل فتوسنتز باید در عضوی فعال و کارآمد صورت گیرد ، کلروپلاست این خاصیت را دارد به این صورت که تعداد بسیار زیاد آنها که حدود نیم میلیون در هر متر مربع سطح برگ است و فعال بودن آنها بدلیل نو شدن هر پنج روز یکبار کلروفیل است.

3: در درون کلروپلاست DNA و RNA مخصوصی وجود دارد که کلروپلاست پروتئین خاصی را با آن می سازد ، کمتر عضوی از سلول DNA و RNA مخصوص به خود دارد و تشکیل تیلاکوئیدها به بودن کلروفیل و پروتئین اختصاصی کلروپلاست بستگی دارد.

بعضی از علفکش ها مثل کلروم فنیکول که بعنوان یک بازدارنده در سنتز پروتئین کلروپلاست عمل می کند . از تشکیل تیلاکوئیدها جلوگیری کرده لذا با عدم تشکیل تیلاکوئیدها سلول و گیاه از بین می رود.

ترکیبات دیگری مثل اکتینومایسین D بعنوان بازدارنده بر سر راه RNA موجود در کلروپلاست عمل می کند و با عدم تشکیل پروتئین ، تیلاکوئیدها هم ساخته نمی شوند .

DNA موجود در کلروپلاست با DNA هسته سلول از نظر دانسیته و هیستون با هم متفاوتند. دانسیته DNA کلروپلاست بالاتر از هسته است از طرفی DNA کلروپلاست هیستون ندارد ولی DNA هسته هیستون دارد.

چون DNA کلروپلاست هیستون ندارد خیلی فعال است.

4: قدرت تکثیر و تولید مثل کلروپلاست بالاست بطوری که اگر از وسط نصف شود خود را ترمیم می کند.

5: قدرت تحرک کلروپلاست بسیار زیاد است بطوری که در شدت نور زیاد بصورت موازی با نور قرار گرفته.

معمولاً به گوشه ای از سلول پناه می برد در صورتیکه در شدت کم نور ، بصورت عمود بر جهت نور باقی می ماند.

عوامل موثر بر فتوسنتز :

عوامل موثر بر فتوسنتز :

1: نور : دو خاصیت کیفیت و شدت نور بر میزان فتوسنتز تأثیر می گذارد.

کیفیت نور : طول موج موثر نور در واکنش های نوری فتوسنتز ، طول موج های بین 700 – 400  نانومتر ( نور مرئی ) است.

در این طول موج ها نور قرمز بیشترین اثر را بر فتوسنتز داشته و پس از آن نور آبی و در آخر نور سبز است.

طول موج های بیش از 700 نانومتر ( مادون قرمز ) فقط اثر حرارتی دارند و اثر مستقیم بر فتوسنتز ندارند و طول موج های کمتر از 400 نانومتر نیز بعلت انرژی زیادی که دارند فقط اثر بازدارندگی و تخریبی بر فتوسنتز دارند.

شدت نور : در شرایطی که نور وجود ندارد ، در گیاهان تنفس انجام می شود ولی در حضور نور ، میزان شدت فتوسنتز افزایش می یابد.

نقطه ای که میزان فتوسنتز و تنفس برابر می شوند ، نقطه جبران نوری است.

نقطه جبران نوری در گیاهان C4 بالاتر از گیاهان C3 است.

با افزایش شدت نور میزان فتوسنتز بصورت خطی افزایش می یابد ولی در نهایت به جایی می رسد که با افزایش شدت نور دیگر فتوسنتز افزایش نمی یابد، به این نقطه ، اشباع نوری گفته می شود.

نقطه اشباع نوری در گیاهان C3 پائین تر از گیاهان C4 است. در واقع گیاهان C4 در شدت نورهای طبیعی حتی با شدتهای بالا به اشباع نوری نمی رسند.

در کل ، گیاهان C4 در شدت نورهای بالا عملکرد بهتری از گیاهان C3 دارند ولی گیاهان C3 در شدت نورهای پایین تر عملکرد بهتری دارند.

2: دی اکسید  کربن :

افزایش غلظت Co2 باعث افزایش فتوسنتز در گیاهان C3 می شود که افزایش Co2 تا میزان 1500 پی پی ام می تواند فتوسنتز را افزایش دهد.

البته گیاهان C4 بعلت اینکه تثبیت C02  در آنها در کلروپلاستهای غلاف آوندی که غلظت Co2 در آنجا بالاست صورت می گیرد .

افزایش غلظت Co2 باعث افزایش چندانی در فتوسنتز نمی شود. بنابراین افزایش غلظت Co2 در شرایط گلخانه ( و یا افزایش غلظت Co2 در طبیعت به علت افزایش مصرف سوخت های فسیلی ) می تواند عملکرد گیاهان را تحت تأثیر قرار دهد.

3: حرارت :

باافزایش درجه حرارت تا یک حد معین ، باعث افزایش فتوسنتز می گردد.

در درجه حرارتهای بالا( 50 درجه به بالا ) بر اثر انعقاد پروتئینها و آنزیم ها ، فتوسنتز متوقف می شود.

واکنش های نوری فتوسنتز در دامنه حرارتی که گیاه رشد می کند ، تحت تأثیر درجه حرارت قرار نمی گیرد.

ولی مرحله تثبیت Co2 که تحت تأثیر آنزیمها است با افزایش درجه حرارت تا جائیکه حرارت ، فعالیت آنزیمی را مختل نکند ، افزایش می یابد.

البته  در اثر افزایش حرارت ، میزان تنفس گیاه نیز افزایش می یابد و در نقطه ای که میزان تنفس و فتوسنتز ( فتوسنتز حقیقی ) برابر می شود فتوسنتز خالص ( فتوسنتز ظاهری ) صفر می گردد.

4: آب :

فقط 1% از آب جذب شده توسط گیاه صرف فتوسنتز می گردد ولی اثر اصلی آب در فتوسنتز بر باز و بسته شدن روزنه هاست.

با کاهش آب به گیاه ، حالت پژمردگی دست می دهد و روزنه های گیاه بسته می شود. بسته شدن روزنه ها باعث کاهش غلظت Co2 در داخل برگ و کاهش شدید فتوسنتز می شود.

بنابراین اثر آب بیشتر یک اثر غیرمستقیم است. عوامل دیگری نیز بصورت مستقیم و غیرمستقیم بروی فتوسنتز تأثیر می گذارند که از آن جمله می توان به مواد معدنی، سن برگ ، رطوبت نسبی و غیره اشاره کرد.

واکنش های تاریکی فتوسنتز :

واکنش های تاریکی فتوسنتز :

واکنش هایی که در استروما انجام می شوند .

چون نیاز به نور ندارند، واکنش های تاریکی نامیده می شوند. واکنش های نوری و تاریکی فتوسنتز هردو در روز انجام می شوند .

در جریان واکنش های تاریکی Co2 تثبیت شده و هیدرات کربن و آب تولید می شود. واکنش های تاریکی در داخل استروما صورت می گیرد.

چرخه احیای کربن را سیکل کالوین می گویند. چرخه کالوین دارای سه مرحله کلی است :

1: کربوکسیلاسیون ریبولوز 1 و 5 بی فسفات و تشکیل دو مولکول 3 – فسفوگلیسرات .

2: احیای 3 – فسسفوگلیسرات به گلیسر آلدئید 3 – فسفات.

3: تشکیل ریبولوز 1 و 5 بی فسفات از گلیسرآلدئید3 – فسفات.

Co2 از طریق واکنش با 1 و 5 بی فسفات وارد چرخه تثبیت کربن شده و به 2 مولکول 3 – فسفات گلیسرات تبدیل می شود.

این واکنش بوسیله آنزیم ریبولوز بی فسفات کربوکسیلاز ( RUBPC ) که به اختصار به آن رابیسکو می گویند ، کاتالیز می شود.

در جریان تبدیل ریبولوز 5 – فسفات به ریبولوز 1 و 5 بی فسفات ، یک مولکول ATP به ADP تبدیل می شود که گروه فسفات خود را به ریبولوز 5 – فسفات منتقل می کند.

همچنین در جریان تبدیل 3 – فسفات گلیسرات اسید به 3 – فسفو گلیسر آلدئید ، مولکول NADPH  و ATP مصرف می شوند.

برای هر چرخه کلوین و تثبیت یک مولکول Co2 نیاز به 3 مولکول ATP و 2 مولکول NADPH است.

واکنش های نوری فتوسنتز :

واکنش های نوری فتوسنتز :

این واکنش ها در غشاء لاملاها صورت می گیرند.

در واکنش های نوری فتوسنتز ، آب مصرف شده و اکسیژن آزاد می گردد. همچنین در جریان این واکنش ها انرژی نورانی خورشید بصورت انرژی شیمیایی در مولکولهای ATP و NADPH به دام می افتد که این انرژی در جریان واکنش های تاریکی ثبت CO2 می گردد.

در واکنش های نوری فتوسنتز دو فتوسیستم I و II دخالت دارند. سطح انرژی فتوسیستم I از فتوسیستم II بالاتر است.

مجموعه فتوسیستم I و II و پذیرنده های الکترون واسطه چرخه انتقال الکترون در واکنشهای نوری تشکیل طرحی به نام Z را می دهند.

در این طرح فتوسیستم I وII نقش کلیدی و جذب کننده انرژی نورانی را بر عهده دارند.

واکنش های مرحله روشنایی را بصورت خلاصه می توان به چند دسته تقسیم کرد :

1: جذب انرژی نورانی توسط فتوسیستم II ( P680 ) و آزاد شدن الکترون

2: تجزیه آب به اکسیژن ، یون هیدروژن ( H+ )و الکترون و انتقال الکترون به فتوسیستم II ( واکنش HIL هیل )

3: انتقال الکترون به عامل پذیرنده الکترون ( پذیرنده Q ).

4: انتقال الکترون از عامل پذیرنده الکترون به فتوسیستم I (P700) و ساخته شدن مولکول پر انرژی ATP

5: انتقال الکترون از فتوسیستم I به مولکول NADP+ و تولید مولکول پرانرژی NADPH

این 5 مرحله به دنبال هم زنجیره انتقال الکترون غیر چرخه ای را تشکیل می دهند. زنجیره انتقال الکترون چرخه ای به این صورت است که الکترون که به فردوکسین انتقال یافته ، مجدداً به پلاستوکینون انتقال یافته و دوباره چرخه تکرار می شود.

انتقال الکترون از فردوکسین به پلاستوکینون توسط سیتوکروم B6 صورت می گیرد .

در زنجیره انتقال الکترون چرخه ای ، فتوسیستم I دخالت دارد و در طی آن فقط ATP ساخته می شود.

در زنجیره انتقال الکترون واکنش های روشنایی ، در ازاء هر 10 – 8  فوتونی که توسط فتوسیستم I و II جذب می شود ، 3 کولکول ATP و 2 مولکول NADPH ساخته می شود که این مولکول ها در چرخه تاریکی فتوسنتز مصرف شده و صرف تثبیت یک مولکول Co2 می شوند .

واکنش های نوری فتوسنتز را فتولیز آب یا واکنش های هیل نیز می نامند.

فتوسنتز در گیاهان c3,c4,cam

مقدمه:

فتوستز فرایندی است که طی آن انرژی نورانی خورشید به انرژی شیمیایی تبدیل می شود. که مهمترین پدیده بیولوژیکی روی کره زمین است که منبع انرژی اولیه بشر است. پس فتوسنتز اساس رشد و عملکرد تمام گیا هان زراعی می باشد.

فتوسنتز فقط در گیا هان سازگار از نظر ژنتیکی رخ می دهد.و گاهی متغیر های محیطی نیز ممکن است اثرات محیطی را بپوشاند. از نقطه نظر اصلاح نباتات تلاش برای افزایش عملکرد دانه بدون توجه به مقدارمواد فتوسنتزی قابل دسترس ، به طور کلی شکست خورده است.

فرایند فتوسنتز :

مکان فتوسنتز کلروپلاست ها می باشد.کلروپلاستها ، اجسام رنگدانه داری (کلروفیل) در ستوپلاسم سلولهای برگ و دیگر بافت های سبز می باشند. اختلافات ژنتیکی و محیطی مقادیر نسبی رنگدانه کلروفیل را تغییر داده و برگهایی را تولید می کنند که رنگ سبز تیره تا زرد دارند.

علاوه بر کلروپلاست Co2 , H2o وانرژی نورانی خورشید نیز لازم است تا گلوکز تولید شود. گلوکز به برگها و یا به دانه ها رفته و تغییر شکل می دهد.

کارایی فتو سنتز :

کارایی فتوسنتز در حدود 1% است.یعنی از کل تشعشعات ورودی به یک مزرعه فقط 1% به انرژی شیمیایی تبدیل می شود. رسیدن به کارایی بالا در فتوسنتز امکان پذیر است ولی در شرایط مزرعه بیش از 6% انتظار نمی رود.حد بالای کارایی تا 20% به صورت فرضی محاسبه شده است.

تاریخچه


کربن (واژه لاتین carbo به معنی زغال چوب) در دوران پیشاتاریخ کشف شد و برای مردم باستان که آن را از سوختن مواد آلی در اکسیژن ضعیف تولید می‌‌کردند، آشنا بود.(تولیدزغال چوب).مدت طولانی است که [الماس] به‌عنوان ماده‌ای زیبا و کمیاب به حساب می آید .

فولرن ،آخرین آلوتروپ شناخته شده کربن در دهه 80 به‌عنوان محصولات جانبی آزمایشات پرتو مولکولی کشف شدند. گیاهان CAM روزنه های خود را در شب باز و در روز می بندند. و این خود کارایی مصرف آنها را افزایش می دهد. و تلفات آب به حداقل می رسد.

از آنجا که مسیرورود و خروج CO2 همان روزنه های برگ است. پس اسیمیلاسیون CO2 در شب صورت می گیرد و این همزمان با کربوکسیلاسیون فسفو اینول پیرووات و اگزالواستات (که تبدیل به مالات میشود) اتفاق می افتد. (فسفواینول پیرووات از تجزیه کربوهیدراتهابوسیله مسیر گلیکولیت حاصل می شود) اسید C4 بصورت مالیک اسید در واکوئلهای بزرگ گیاهان CAM تجمع می یابد.

باشروع روز، روزنه ها بسته می شوندو از تلفات آب و جذب بیشتر CO2 جلوگیری می کنند.و مالیک اسید ذخیره شده در واکوئلها مصرف می شود. دکربوکسیلاسیون از طریق عمل آنزیم مالیکNADP برروی مالات یا فسفواینول پیرووات کربوکسی کیناز برروی اگزالواستات صورت می گیرد. CO2 آزاد شده نیز وارد چرخه

C3 PC شده و تبدیل به کربوهیدرات می شود.

بالارفتن CO2 درونی، اکسیژناسیون ریبولوز بی فسفات رامتوقف نموده و به کربوکسیلاسیون کمک می کند.اسید C3 باقیمانده در اثر دکربوکسیلاسیون، ابتدا به تریوز فسفات و سپس به نشاسته یا قند تبدیل می شود.

لازم به ذکر است که طبق مشاهدات به عمل آمده مشخص شده است که کربوکسیلاز در شب فعال و در طی روز غیرفعال بوده در عوض دکربوکسیلاز در طی روز فعال و در شب غیر فعال است.

اولین مرحله در واکنشهای تاریکی فتوسنتز، کربوکسیلاسیون یک پذیرنده 5 کربنی ( ریبولوز 1و5 - بی فسفات ) است که نتیجه آن، تولید یک ماده حدواسط در چرخه PCR  است. اولین مرحله واکنش تاریکی را آنزیمی بنام « ریبولوز بی فسفات کربوکسیلاز- اکسیژناز» که مخفف آن رابیسکو ( RUBISCO ) است، کاتالیز میکند.

یکی از خصوصیات جالب رابیسکو اینست که نه تنها میتواند ریبولوز1و5- بی فسفات را کربوکسیله کند، بلکه آن را اکسید نیز میسازد. که این آغازگر فرایند دیگری بنام تنفس نوری است. این بدلیل آنست که کربوکسیلاسیون و اکسیژناسیون هر دو در یک محل فعال از آنزیم اتفاق می افتد. البته باید متذکر شد که میل ترکیبی رابیسکو نسبت به CO2 بسیار بیشتر از O2 است.

 یعنی در هوای آزاد نسبت کربوکسیلاسیون به اکسیژناز 3 به 1 است. بجز غلظت CO2، درجه حرارت نیز بر حلالیت نسبی CO2 و O2 تاثیر دارد. افزایش دما باعث افزایش تنفس نوری در مقایسه با فتوسنتز میشود.

البته چرخه دیگری در گیاهان بنام چرخه C2PCO وجود دارد. که فسفو گلیکولات ساخته شده در جریان اکسیژناسیون ریبولوز بی فسفات وارد آن شده و می تواند طی واکنشهای پیاپی که در کلروپلاست، پراکسی زوم و میتوکندری صورت میتواند حدود 75 درصد از کربن را دوباره بازیافت کرده و به چرخه C3PCR بازگرداند.

از آنجا که فتوسنتز و تنفس نوری در خلاف جهت یکدیگر فعالیت میکنند. لذا تنفس نوری باعث اتلاف CO2 در سلولهایی میشود که همزمان از طریق چرخه PCR به تثبیت CO2 مشغولند.رقابت میان واکنشهای کربوکسیلاسیون و اکسیژناسیون در گیاه باعث کاهش کارایی ترمودینامیکی فتوسنتز می شود. بعنوان مثال در هوای معمولی، اکسیژناسیون ریبولوز بی فسفات و وجود چرخه , PCO انرژی لازم برای تثبیت یک مول CO2 را از521 میکروژول به 867 کیلو ژول افزایش میدهد.

 * تعدادی از گیاهان فاقد تنفس نوری اند. این وضعیت بخاطر متفاوت بودن خاصیت رابیسکو

نیست. بلکه بدلیل وجود مکانیسمی است که CO2 را در محیط عمل رابیسکو تغلیظ میکند.

هنگامیکه غلظت CO2 در حد بالایی باشد،واکنش اکسیداسیون متوقف میشود.

- سه مکانیسم برای تغلیظ  CO2 در محل کربوکسیلاسیون وجود دارد.

1- پمپ CO2 : که در گیاهان آبی، جلبکها و سیانوباکتری ها دیده شده است. این پمپها با صرف

انرژی حاصل از واکنشهای نوری باعث تجمع کربن غیر آلی بصورت CO2/HCO3- میشوند. که این امر موجب اختلاف بسیار زیاد کربن غیر آلی درون سلول نسبت به بیرون(حتی بیشتر از3 برابر) میشود.این پمپها در سلواهایی که در غلظت بالای CO2 رشد میکنند وجودندارد.

نتیجه متابولیکی افزایش  CO2اینستکه مانع ازاکسیژناسیون ریبولوز بی فسفات میشود.و ازاینروباعث توقف تنفس نوری میشود.

2- چرخه اسیمیلاسیون کربن فتوسنتزی C4 (PCA) :

این چرخه هم در گیاهان تک لپه و هم در دو لپه ایهادیده شده ولی بیشتر در گونه هایی از غلات، چغندریان و جگنها دیده میشود.گیاهان این چرخه از نظر آناتومی با سایر گیاهان متفاوتند.

 

مشاهده ساختمان برگ گیاهان  C4، C3و CAM

تقسیم بندی گیاهان براساس نحوه فتوسنتزو محتوای کلروپلاستی وانزیمیو اولینترکیبات حامل از تثبیت co2به دو گروه :

الف) گیاهان C3:مثل جلبک خزه ها وهمه درختان ،اولین ترکیبات حامل از تثبیت co2 :اسید

فسفرگلیسریک c2

ب)  گیاهان C4: مانند ذرت ، نيشكر، تاج خروس همگی علفی اند اولین ترکیبات حامل از تثبیت

co2:اسید اگزالواستیک

در گياهان مختلف سبزينه دار كه فتوسنتز انجام مي شود و در نتيجه مواد غذايي ساخته مي شود اولين محصول پايدار بدست آمده در آنها متفاوت است . بدين معني كه اولين محصول پايدار در دسته اي از گياهان يك اسيد سه كربني به نام «3- فسفو گليسيريك اسيد» و دسته اي ديگر يك اسيد چهار كربني به نام« دي كربوكسيليك

اسيد » ( داراي دو عامل كربوكسيل COOH- ، ‌مثل اسيد اگزالواستيك ،‌اسيد ماليك ، اسيد آسپارتيك ) مي باشد .

گياهاني كه اولين محصول پايدار حاصل از فتوسنتز آن ها يك اسيد سه كربنه است گياهان C3 و آندسته كه اولين محصول پايدار آن ها چهار كربني است گياهان C4 ناميده مي شوند . گياهان C4  در مقايسه با گياهان C3 از بازدهي فتوسنتزي بيشتري برخوردارند . بر همين پايه علف هاي هرز C4 نسبت به علف هاي هرز C3 قدرت رقابت زيادتري دارند . در تعدادي از گياهان گوشتي فرآيند فتوسنتزي ديگري مشاهده شده كه در شرايط رطوبت كم روزنه ها در شب باز شده و Co2 جذب مي كنند و در روز بسته مي شوند لذا شدت تعرق گياه خيلي

كم مي شود . به اين نوع مكانيسم ، متابوليسم كراسولايي (CAM) "Crassulation asid metabolism" مي گويند مانند آگاو ،‌آناناس ،‌كاكتوس . كليه ي گياهان (CAM) جزء‌گياهان گوشتي غير نمكدوست هستند و عموما با محيط هاي خشك  سازگارند . برخي از گياهان C3 عبارتند از گندم ،‌جو ،‌سلمه ،‌ترشك ، توق ، تاتوره ،‌يولاف،‌بارهنگ و پنيرك .

از گياهان C4 مانند ذرت ، نيشكر ، اويار سلام ،‌ قياق ،‌سوروف ، پنجه مرغي ،‌تاج خروس ،‌خرفه ،‌سورگوم ،‌علف شور ،‌خار خسك .

تیپ C3 که در اکثر گیاهان دیده می شود، به دلیل اینکه CO2 تثبیت شده در ساختار گیاه، در اولین مرحله از واکنش‌های تاریکی فتوسنتز (چرخه کالوین) توسط آنزیم روبیسکو منجر به تولید قندی 3 کربنی موسوم 3- فسفو گلیسر آلدهید می‌شود، به این نام معروف است. این گروه از گیاهان با یک مشکل جدی مواجه هستند:

تنفس نوری

این فرآیند که به دلیل عملکرد دوگانه روبیسکو (کربوکسیلاسیون و اکسیژناسیون) رخ می‌دهد، منجر به کاهش بازده فتوسنتز در گیاهان می‌شود. دلیل این هم که این گیاهان بر خلاف گیاهان تیپ C4 قادر به حذف چنین فرآیندی نیستند به ساختار این دو دسته گیاهی برمی‌گردد: در گیاهان C4 محل انجام مرحله روشنایی فتوسنتز (مراحل مربوط به انتقال الکترون بین فتوسیستم I و II که منجر به رهاسازی اکسیژن به عنوان عامل آغازگر تنفس نوری می‌شود)

 از محل انجام واکنش‌های مرحله تاریکی (چرخه کالوین که روبیسکو در این چرخه قرار دارد) جدا است! به طوری که واکنش اول در سلول‌های مزوفیلی و واکنش دوم در سلول‌های غلاف آوندی رخ می‌دهد. این امر موجب می شود که اصولا اکسیژن آزاد شده طی واکنش‌های روشنایی در مزوفیل به دلیل عدم دسترسی به روبیسکو به عنوان عامل تنفس نوری (که در درون سلول‌های غلاف آوندی است)قادر به ایجاد تنفس نوری نباشد .

در طرف مقابل ، در گیاهان C3 چنین تمایز سلولی در انجام دو مرحله فتوسنتزی وجود نداشته و هر دو مرحله در سلول مزوفیلی رخ داده و اکسیژن آزاد شده طی واکنش‌های نوری به عنوان سوبسترایی رقابتی با دی اکسید کربن بر روی جایگاه فعال آنزیم روبیسکو به رقابت پرداخته و منجر به وقوع تنفس نوری شود که این امر موجب کاهش بازده  فتوسنتز در این گیاهان می شود .  اصولا میزان تمایل روبیسکو  به دی اکسید کربن خیلی بیشتر از تمایل آن به اکسیژن است. ولی به هر حال همین مقدار تنفس نوری هم میتواند منجر به کاهش بازده تنفس نوری شود.

در گياهان مختلف سبزينه دار كه فتوسنتز انجام مي شود و در نتيجه مواد غذايي ساخته مي شود اولين محصول پايدار بدست آمده در آنها متفاوت است . بدين معني كه اولين محصول پايدار در دسته اي از گياهان يك اسيد سه كربني به نام «3- فسفو گليسيريك اسيد» و دسته اي ديگر يك اسيد چهار كربني به نام« دي كربوكسيليك اسيد » ( داراي دو عامل كربوكسيل COOH- ، ‌مثل اسيد اگزالواستيك ،‌اسيد ماليك ، اسيد آسپارتيك ) مي باشد . گياهاني كه اولين محصول پايدار حاصل از فتوسنتز آن ها يك اسيد سه كربنه است گياهان C3 و آندسته كه اولين محصول پايدار آن ها چهار كربني است گياهان C4 ناميده مي شوند . گياهان C4 در مقايسه با گياهان C3 از بازدهي فتوسنتزي بيشتري برخوردارند . بر همين پايه علف هاي هرز C4 نسبت به علف هاي هرز C3 قدرت رقابت زيادتري دارند . در تعدادي از گياهان گوشتي فرآيند فتوسنتزي ديگري مشاهده شده كه در شرايط رطوبت كم روزنه ها در شب باز شده و Co2 جذب مي كنند و در روز بسته مي شوند لذا شدت تعرق گياه خيلي كم مي شود . به اين نوع مكانيسم ، متابوليسم كراسولايي (CAM) "Crassulation asid metabolism" مي گويند مانند آگاو ،‌آناناس ،‌كاكتوس . كليه ي گياهان (CAM) جزء‌گياهان گوشتي غير نمكدوست هستند و عموما با محيط هاي خشك سازگارند .

برخي از گياهان C3 عبارتند از گندم ،‌جو ،‌سلمه ،‌ترشك ، توق ، تاتوره ،‌يولاف ،‌بارهنگ و پنيرك .
  مقایسه فتوسنتز در گیاهان C3 ، C4 و CAM


C3

C4

CAM

آنزیم تثبیت کننده CO2

روبیسکو

غیراز روبیسکو

غیر از روبیسکو

محل تثبیت CO2

بستره ي کلروپلاست

سلول های میانبرگ

واکوئل سلول

مرحله تثبیت CO2

چرخه کالوین

قبل از چرخه کالوین

قبل از چرخه کالوین

زمان باز شدن روزنه های هوایی

روز

روز

شب

زمان تثبیت CO2

روز

روز

شب

زمان چرخه کالوین

روز

روز

روز

زمان تولید قند در فتوسنتز

روز

روز

روز

مرحله ساخته شدن قند در فتوسنتز

چرخه کالوین

چرخه کالوین

چرخه کالوین

محل ساخته شدن قند در فتوسنتز

تمام سلول های فتوسنتز کننده

سلول های غلاف آوندی

تمام سلول های فتوسنتزکننده

اولین ترکیب پایدار حاصل از تثبیت CO2

اسید سه کربنی

اسید چهار کربنی

اسید چهارکربنی

 

گیاهان C3 و C4 :

زمانی که اولین محصول فتوسنتزی در گیاه ،یک ترکیب 3 کربنه (C3) باشد از مسیر کالوین بنسون و اگر 4 کربنه (C4) باشد از طریق هچ اسلک است .که برای اصلاع گیاهان C4 به کار برده می شود. و انحراف از نوع فتوسنتز C4 را متابولیسم اسید کراسولاسه یا CAM می نامند که با مناطق خشک سازگاری دارد.

گیاهان C4 (ذرت ، سورگوم ، ارزن) در شرایط گرم و نور زیاد کارایی بیشتری از گیاهان C3 (غلات) دارند . در مجموع کارایی آنها (C4) حدود 40 % است.

تمام گیاهان به انرژی نیاز دارند و این انرژی از طریق تنفس به دست می آید :

2 نوع تنفس وجود دارد :

1- مستقل از نور : قند و کربو هیدرات تولید شده در فتوسنتز را به CO2 و H2O تبدیل می کند. از نظر زراعی تنفس نشان دهنده تلفات است و باید به حداقل برسد که درست نیست زیرا تنفس لازم است تا انرژی برای رشد و بقای گیاه فراهم شود و تنفس بیش از نیاز برای تولید عملکرد زاید است . پس اهمیت سرعت اسیمیلاسیون خالص بیش از سرعت فتوسنتز و تنفس است.

2 تنفسی که در حضور نور و در گیاهان C3 مشاهده می شود و ظاهرا در گیاهان C4 وجود ندارد.

اختلافات گیاهان C3 و C4 :

1 گیاهان C4 نسبت به C3 به نورهای با شدت بالا واکنش نشان می دهند.(2 برابر گیاهان C3)

2 گیاهان C4 با کارایی بیشتری از CO2 استفاده می کنند و در شدت نور ثابت و نسبتا زیاد قادرند CO2 اطراف را به ppm 10 – 0 کاهش دهند. که این نقطه جبران است . در حالی که در C3 برابر

ppm 150 -50 co2 است . نقطه جبرانی پایین نشان دهنده کارایی زیاد فتوسنتز است .

3- گیاهان C4 سرعت اسیمیلاسیون خالص بالاتری از C3 دارند که به خاطر عدم وجود تنفس نوری است .

4 درجه حرارت بر روی C4 تاثیر مطلوب ، و بر روی گیاهان C3 تاثیر نا مطلوبی دارد . تا دمای 0 تا 35 درجه سانتیگراد سرعت تنفس به ازای هر 10 درجه سانتیگراد افزایش حدود 2 تا 4 برابر افزایش می یابد. بسیاری از گیاهان C3 در محدوده دمایی 25 تا 35 درجه سانتیگراد تولیدی ندارند ولی گیاهان C4 افزایش نولید دارند.

5 در گیاهان C4 کارایی مصرف آب بیش از گیاهان C3 است . میانگین ماده خشک تولید شده برای هر 1000 گرم آب مصرفی ، 29/3 گرم برای C4 و 54/1 گرم برای C3 می باشد.

6 سرعت انتقال با سرعت فتوسنتز همبستگی دارد زیرا انتقال آهسته می تواند عملکرد را محدود کند . در برگهای گیاهان C4 انتقال 2 برابرسریعتر از برگهای C3 است.

7 حداکثر رشد گیاهان C4 بیشتر از گیاهان C3 است (به جز چند استثناء). وقتی طول فصل رشد متوسط در نظر گرفته می شود سرعت رشد C3 برابر 13 گرم در متر مربع در روز بوده و برای گیاهان C4 برابر 22 گرم در متر مربع در روز می باشد. با محصور کردن گیاهان C3 و C4 در ظرف در بسته دارای نور اختلاف در تنفس نوری را می توان نشان داد . چون C4 نقطه جبرانی پایین تری از گیاهان C3 دارند زمانی که گیاهان C4 از CO2 مصرف می کنند گیاهان C3 از بین می روند.

 

فتوسنتز و عملکرد غلات :

چون کربن جزء اصلی ماده خشک گیاه است ، پس منطقی است که افزایش سرعت اسیمیلاسیون دی اکسید کربن باعث افزایش عملکرد شود. از حدود سالهای 1960 سرعت اسیمیلاسیون Co2 نقطه شروعی برای توجیه بهبود عملکرد گیاهان زراعی بوده است و درک اینکه چرا افزایش سرعت فتوسنتز برگ ممکن است عملکرد را افزایش ندهد اساس درک فیزیولوژی در رابطه با رشد و نمو آن ها می باشد.

تمام مواد فتوسنتزی تولید شده به سمت عملکرد اقتصادی یعنی دانه هدایت نمی شود . بخشی به ریشه ها ، برگ ها ، ساقه ها و وظایف حیاتی گیاه مصرف می شود . لذا  اندازه گیری سرعت  فتوسنتز یک برگ از یک گیاه منفرد، نمی تواند نشان دهنده کل سرعت فتوسنتز آن گیاه با جمعیت گیاهی باشد.

زلیچ دریافت که اندازه گیری فتوسنتز گمراه کننده است  و دریافت که عملکرد گیاه زراعی رابطه نزدیکی با اسیمیلاسیون  فتوسنتزی خالص Co2 دارد که در طول فصل محاسبه شده باشد .و همچنین آزمایشات ، بر روی غنی سازی Co2 حاکی از آن است که افزایش فتوسنتز خالص عملکرد را افزایش می دهد.

 اختلاف در کارایی فتوسنتز :

برخی گونه های گیاهی زراعی سرعت فتوسنتزی متفاوتی را نشان می دهند . بعنوان مثال سورگوم و ذرت ظرفیت بهره برداری انرژی نورانی خورشید را با سرعت تقریبا 50 تا 66 % بیشتر از توتون دارند . که بخش عمده ای از این اختلاف را می توان با اختلافات در تنفس توضیح داد.

نمو گیاه و فتو سنتز :

آندوسپرم بذر غلات زمانی تا مین کننده غذا است که بذر شروع به جوانه زنی و کلئوپتیل خارج و اولین برگ شروع به فتوسنتز نمایید. در شرایط گرم و مرطوب طی 4 تا 5 روز ، و در شرایط سرد و خنک تا 2 هفته طول می کشد. البته عمق کاشت و وجود سله در فواصل بین بذر کاری و سبز شدن نیز تاثیر دارد. بعد از سبز شدن و رشد سریع سطح فتوسنتزی کود را به صورت نواری در 2 طرف بذر و کمی پایین تر قرار می دهند.

اگربذر در تماس مستقیم با کود قرار بگیرد ، ممکن است سبب ضایعات اسمزی شود . مرحله رشد رویشی (جوانه زنی گلدهی) ، که طی آن میانگره ها و تعداد پنجه ها ، تعداد و اندازه سلول ها ، طول میانگره ها تحت تاثیر طول مدت مرحله رویشی که خود نیز تحت تاثیر درجه حرارت و طول روز است .افزایش قطر ساقه ها از طریق بزرگ شدن سلول ها زمانی رخ می دهد که ساختمان های ضروری شکل گرفته اند.

مرحله رسیدگی از زمان تلقیح گل تا بلوغ بذر می باشد.این مرحله برای توسعه دانه بحرانی است و مصرف آب ، سطح برگ برای جذب موثر نور خورشید ، یا اضافه کردن مواد غذایی ممکن است فتوسنتز را برای توسعه دانه افزایش دهد ،بدون آنکه رشد رویشی را تحریک کند.

عملکرد وزن خشک نهایی دانه حاصل سرعت پر شدن دانه و طول مدت پر شدن دانه می باشد. و زمانی که در وزن خشک دانه افزایشی صورت نمی گیرد محصول به بلوغ فیزیولوژیکی خود رسیده است . که با نمونه برداری از دانه و خوشه می توان توقف افزایش وزن خشک و مرحله برداشت را تعیین نمود.

روابط مخزن منبع :

برای تولید موفقیت آمیز غلات باید به بذر کاری در زمان مناسب و ظرفیت فتوسنتزی مناسب برای تولید دانه توجه شود.

در جو، منبع و مخزن به نظر نمی رسد که هیچ کدام محدودیتی برای عملکرد دانه داشته باشند و اثرات متقابل فید بک ها نشان می دهد که سرعت فتوسنتز ممکن است برای نیاز دانه تعدیل شود. در غلات اندازه مخزن به تعداد دانه در سنبلچه و حجم دانه و وزن آن بستگی دارد . مطالعه ای در گندم و برنج نشان می دهد که ظرفیت ذخیره ممکن است محدودیت اصلی برای عملکرد دانه باشد.

گیاهان کم ( CAM ) :

گیاهان کم ( CAM ) :

دسته ای گیاهان در مناطق گرم و خشک ، بیابانی ، کم آب و مناطق حاره ای امکان انجام فتوسنتز در روز را به دلیل تفات آب از طریق روزنه های خود ندارند.

بطوری که اگر روزنه ها ی خود را در روز برای انجام فتوسنتز باز نگه دارند بدلیل تلفات شدید آب از روزنه ها بصورت تعرق امکان حیات را از دست می دهند.

بنابراین در این گیاهان برای تطابق با شرایط بحرانی ( از نظر دما و رطوبت ) تکاملی در خود ایجاد کرده اند که در شرایط بسته بودن روزنه ها در روز بتوانند فتوسنتز کرده و به حیات خود ادامه دهند.

مکانیسم تثبیت Co2 در گیاهان CAM شبیه گیاهان C4 است با این تفاوت که در گیاهان C4 محل فعالیت دو آنزیم PEP کربوکسیلاز و RUBP کربوکسیلاز متفاوت است ولی در گیاهان CAM زمان فعالیت این دو آنزیم فرق می کند.

گیاهان CAM در شب که دما و تعرق پائین است روزنه های خود را باز نموده و CO2 را بصورت اسید مالیک تثبیت کرده و در واکوئل های خود ذخیره می کنند.

سپس در روز اسید مالیک ذخیره شده را به هیدراتهای کربن تبدیل می کنند ( مانند گیاهان C4 ) . به این ترتیب گیاهان CAM با انجام تعرق بسیار کم  فتوسنتز می کنند و به اینصورت به حیات خود ادامه می دهند.

اپیدرم گیاهان CAM از چند لایه تشکیل شده است و کوتیکول ضخیم دارند. سطح برگ آنها پوشیده از کرک است. در بعضی از گونه ها کرکها کاملاً تحلیل رفته و بصورت خار در آمده است.

این گیاهان دارای برگها و ساقه گوشتی با واکوئلهای پر از آب هستند. گیاهان CAM مانند گیاهان C4 ، Co2 را بصورت اسیدهای چهارکربنه ( توسط آنزیم PEPC ) تثبیت می کنند و یکی ار تفاوتهای آن با گیاهان C4 اینست که این عمل در شب که روزنه ها باز هستند انجام می شود . انرژی لازم برای این عمل از گلیکولیز تأمین می شود.

در گیاهان CAM در طول روز مقدار هیدراتهای کربن ذخیره ای در برگ افزایش می یابد و در شب برعکس کاهش می یابد .

تغییرات شبانه روزی در مقدار اسید آلی موجود در برگ گیاهان CAM بعلت تولید اسید مالیک در شب و تجزیه شدن آن در طول روز است.

از جمله گیاهانی که دارای سیکل CAM هستند می توان به انواع کاکتوس ها ، آناناس ، آگاو و غیره اشاره کرد.

فیزیولوژی گیاهی،تعریف فیزیولوژی گیاهی،جزوه فیزیولوژی گیاهی،ارشد فیزیولوژی گیاهی:


فيزيولوژي دانشي است که وظيفه‌اش بررسي عملکرد (Function) موجودات زنده است. ماهيت بررسي در اين علم ، وظيفه و کارکرد اندامهاست. نام قديمي فيزيولوژي وظايف‌الاعضا بوده است. فيزيولوژي گياهي ، مطالعه اعمال حياتي گياه ، فرايندهاي رشد و نمو ، متابوليزم و توليد مثل گياهان است
ديد کلي
کشف قوانيني که بر تغذيه گياه و رشد و نمو آن حکومت مي‌کند، شناخت توانايي واقعي سلولها در انجام فعاليتهاي بيولوژيک و همچنين ارائه روشهايي که ظهور يکي از توانائيهاي سلولي را امکان‌پذير مي‌سازد، هدف اساسي فيزيولوژي گياهي محسوب مي‌شود. همانطور که مسير روشن بسياري از اکتشافات نظري ، منشا پيشرفتهايي در يکي از شاخه‌هاي تجربي علوم است، نتايج حاصل از مطالعاتي که در همه شئون علمي بالاخص در فيزيولوژي گياهي صورت گرفته، باعث توسعه و پيشرفت واقعي کشاورزي شده و آن را از صورت ابتدايي خود در نخستين روزهاي ظهور انسان به صورت کاملا پيشرفته امروزي ، مبدل ساخته است.
از طرف ديگر ، ترقيات سريع فيزيولوژي گياهي نيز خود مديون ترقيات علوم ديگري مانند فيزيک و شيمي است، زيرا عملا کليه اعمال متابوليزم سلولها بر اساس قوانيني تفسير مي‌شوند که در مورد عالم بيجان شناخته شده‌اند. شک نيست که علم فيزيولوژي گياهي ، علمي است تجربي و همه کوششهايي که در اين زمينه صورت مي‌گيرند، به شناسايي بيش از پيش ماده زنده منجر مي‌شوند. به علاوه فيزيولوژي گياهي ، علم پايه مستقلي است که داراي مفاهيم خاصي بوده، شيوه مخصوصي در تجربيات آن مشاهده مي‌شود.

موضوعات مطرح شده در فيزيولوژي گياهي
فيزيولوژي گياهي را مي‌توان مطالعه اعمال حياتي گياه ، فرايندهاي چرخه‌اي متحرک رشد ، متابوليزم و توليد مثل دانست. مباحث زيادي در فيزيولوژي گياهي بحث مي‌شود و در هيچ علمي ، نحوه پيشرفت واضح‌تر از زمينه فيزيولوژي گياهي نيست. از مباحثي که در فيزيولوژي گياهي بحث مي‌شود، مي‌توان به موارد زير اشاره کرد.

تغذيه و جذب در گياهان
انجام صحيح فرايندهاي متابوليزمي مستلزم وجود عناصري است که بايد به صورت اکسيد شده يا احيا شده ، معدني و يا آلي جذب سلولها شده، احتياجات آنها را از نظر ماده و انرژي تامين کنند. مقدار و نوع اين احتياجات تابعي از شدت و نوع واکنشهاي متابوليزمي بوده و به همين مناسبت هر موجودي از نظر قدرت سنتز و طريقه تحصيل انرژي با موجود ديگر متفاوت است.
موجودات زنده را از نظر قدرت سنتز و همانند سازي به دو دسته اتوتروف و هتروتروف تقسيم مي کنند. موجودات اتوتروف موجوداتي را گويند که از ترکيبات ساده‌اي نظير دي‌اکسيد کربن و ترکيبات معدني مختلف مانند نيتروژن معدني ، مي‌توانند کليه احتياجات خود را برطرف سازند که گياهان در اين گروه قرار مي‌گيرند.

احتياجات گياهان نسبت به انرژي
سلولهاي گياهي انرژي موجود در مواد تشکيل دهنده خود را به صور مختلف زير از دست مي‌دهند.
• به صورت انرژي حرارتي که در بعضي موارد مانند گل آذين گل شيپوري کاملا آشکار است.
• به صورت انرژي نوراني مانند فلورسانس کلروفيل
• به صورت انرژي مکانيکي مانند سيکلوز در سيتوپلاسم
• به صورت انرژي الکتريکي که نتيجه آن برقراري اختلاف پتانسيل بين اعضاي مختلف گياهان است.

احتياجات گياهان نسبت به مواد
ميزان اين احتياجات در نمونه‌هاي مختلف گياهي ، متفاوت است. رفع احتياجات يک گياه بالغ در درجه اول به منظور جبران موادي است که اين گياه در طول حيات از دست مي‌دهد. در درجه دوم ، رشد و نمو يک گياه احتياجات احتمالي ديگري بوجود مي‌آورد. کليه اين احتياجات بوسيله منابع طبيعي مختلفي تامين مي‌شوند که عبارتند از: خاک ، هوا ، آب و محيطهاي آلي.
بطور کلي در بخش تغذيه و جذب مباحث مختلفي بحث مي‌شود: احتياجات گياهان ، نقش عمومي و اختصاصي عناصر و علائم کمبودهاي آنها ، محلولهاي غذايي و کودهاي شيميايي ، تغذيه نيتروژن معدني و آلي ، چرخه متابوليزمي نيتروژن ، گوگرد و فسفر ، رابطه آب و خاک ، گردش مواد در گياه ، جذب مواد معدني ، مکانيزم جذب مواد و.... .

فتوسنتز
فتوسنتز (photosynthesis) از نظر لغوي به معناي توليد با استفاده از نور خورشيد است. فتوسنتز شامل دو دسته واکنش است که هردو در کلروپلاستها صورت مي‌گيرند. طي فتوسنتز انرژي و آب و اکسيژن توليد مي‌شود.
زندگي در روي کره زمين به انرژي حاصل از خورشيد وابسته است. فتوسنتز (photosynthesis) از نظر لغوي به معناي توليد با استفاده از نور خورشيد است. فتوسنتز شامل دو دسته واکنش است که هردو در کلروپلاستها صورت مي‌گيرند. طي فتوسنتز انرژي و آب و اکسيژن توليد مي‌شود.
در فتوسنتز ، انرژي خورشيدي براي اکسيد کردن آب ، آزاد شدن اکسيژن و نيز احيا کردن به ترکيبات آلي و در نهايت قند بکار مي‌رود. فتوسنتز شامل دو دسته از واکنشهاست: واکنشهاي نوري و واکنشهاي تاريکي.
بطور کلي در بخش فتوسنتز مباحث مختلفي بحث مي شود:
مفاهيم کلي در مورد فتوسنتز ، عملکرد کوانتومي نور ، ساختمان دستگاه فتوسنتزي ، ساختار تيلاکوئيدها در کلروپلاست ، گيرنده‌هاي نوري ، فتوسيستم‌هاي I و II ، مکانيزم انتقال الکترون و پروتون در کلروپلاستها ، ژنوم کلروپلاست ، چرخه احياي فتوسنتزي ، تنفس نوري ، چرخه احياي فتوسنتزي ، چرخه احياي کربن در گياهان CAM(کراسولاسه) ، سنتز نشاسته و ساکارز در گياهان و ... .

رنگدانه‌هاي فتوسنتزي
انرژي نور خورشيد ابتدا بوسيله رنگدانه‌هاي نوري گياهان جذب مي‌شود. همه رنگدانه‌هايي که در فتوسنتز فعاليت دارند در کلروپلاست يافت مي‌شوند. کلروفيلها و باکترو کلروفيلها که در بعضي از باکتريها يافت مي‌شوند رنگدانه‌هاي رايج موجودات فتوسنتز کننده هستند. البته همه موجودات فتوسنتز کننده داراي مخلوطي از بيش از يک رنگدانه هستند که هر کدام عمل خاصي را انجام مي‌دهند. از ديگر رنگدانه‌ها مي‌توان به کاروتنوئيدها و گرانتوفيل اشاره کرد.
کلروپلاست محلي است که در آن فتوسنتز صورت مي‌گيرد
برجسته‌ترين خصوصيت ساختماني کلروپلاست ، سيستم فشرده غشاهاي دروني است که به تيلاکوئيد معروف است. کل کلروفيل در اين سيستم غشايي که محل واکنش نوري فتوسنتز است قرار گرفته است. واکنشهاي احياي کربن يا واکنشهاي تاريکي در استروما (ناحيه‌اي از کلروپلاست که بيرون تيلاکوئيد قرار گرفته است) صورت مي‌گيرند. تيلاکوئيدها خيلي نزديک به يکديگر قرار دارند که به تيغه‌هاي گرانا موسومند.

مکانيزم جذب نور در گيرنده‌هاي نوري
موجودات فتوسنتز کننده داراي دو مرکز نوري متفاوت هستند که پشت سر هم آرايش يافته‌اند و سيستمهاي نوري 1 و 2 ناميده مي‌شوند. سيستمهاي گيرنده در رده‌هاي مختلف موجودات فتوسنتز کننده تفاوت قابل ملاحظه‌اي دارند. در صورتي که مراکز واکنش حتي در موجوداتي که نسبتا اختلاف دارند يکسان است. مکانيزمي که از آن طريق انرژي تحريک کننده از کلروفيل به مرکز واکنش مي‌رسد، اخيرا به صورت انتقال رزونانس از آن ياد شده است. در اين فرايند فوتونها به سادگي از يک مولکول کلروفيل دفع و توسط مولکول ديگر جذب نمي‌شوند. بيشتر انرژي تحريک کننده از طريق فرايند غير تشعشعي از يک مولکول به مولکول ديگر منتقل مي‌شود.
يک مثال مناسب براي درک فرايند انتقال رزونانس ، انتقال انرژي بين دو رشته سيم تنظيم شده (کوک) است. اگر يکي از رشته‌ها ضربه بخورد و درست نزديک ديگري قرار گيرد رشته تنظيم شده ديگر مقداري انرژي از اولي دريافت نموده و شروع به ارتعاش مي‌کند.
کار آيي انتقال انرژي بين دو رشته تنظيم شده به فاصله آنها از يکديگر ، جهت‌گيري نسبي آنها و نيز تواترهاي ارتعاشي بستگي دارد که مشابه انتقال انرژي در ترکيبات گيرنده است.

واکنشهاي نوري فتوسنتز
موجودات فتوسنتز کننده از طريق اکسيد کردن آب به مولکول اکسيژن و احياي نيکوتين آميد آدنين دي نوکلئوتيد فسفات ،‌ الکترون را به صورت غير چرخه‌اي منتقل مي‌کنند. بخشي از انرژي فوتون از طريق اختلاف PH و اختلاف پتانسيل الکتريکي در دو طرف غشاي فتوسنتزي به صورت انرژي پتانسيل شيميايي آدنوزين تري فسفات ذخيره مي‌شود. اين ترکيبات پر انرژي انرژي لازم براي احياي کربن در واکنشهاي تاريکي فتوسنتز را تامين مي‌کنند.
آدنوزين تري فسفات
آدنوزين تري فسفات (ATP)

اطلاعات اوليه
فقدان اکسيژن يکي از خواص مهم جو اوليه به شمار مي آيد. چنانچه در آن آميزش برق آساي عناصر اکيسژني وجود مي داشت، مولکولهاي ناپايدار حاصل ، به سادگي بر اثر احتراق نابود مي شدند. اگر حيات بدون استعانت از اکسيژن حادث شده باشد، بايد تخمير آن را تامين کرد و باشد، که لولي پاستور ، شيميدان فرانسوي نيز آن را حيات بدون آزمايش‌هاي مربوط به هوا توصيف کرد. عمل تخمير بر اثر شکستن مولکولهاي آلي)ترکيبات حاوي کربن) انرژي لازم را در اختيار ياخته قرار مي دهد، فسفاتهاي پر انرژي از قبيل آدنوزين تري فسفات را رها مي کند.
برخي از اشکال تخمير ، مانند تخمير هاي مواد الکل ، به عنوان فرآورده فرعي ، دي اکسيد کربن توليد مي کنند. رها شدن اين گاز در جو به وسيله اشکال بي هوازي حيات ، که به اکسيژن نياز دارند، در تکامل فرايند هاي سوخت و ساز بعدي ، از جمله عمل تنفس سهيم اند.

آدنوزين تري فسفات در مرحله دوم سوخت و ساز
بعد از عمل تخمير ، پيشرفت بعدي سوخت و ساز عبارت بود از چرخه مونوفسفات ششگانه (HMP). اين عمل اساسا فرايندي بي هوازي است که به کمک انرژي حاصل از آدنوزين تري فسفات ، هيدروژن را از قند آزاد مي کند. دي اکسيد کربن نيز به عنوان فراورده فرعي به دست مي آيد. نيمي هيدروژن مربوط به چرخه HMP از آب به دست مي آيد. اين چرخه معرف مرحله‌اي نسبتا پيشرفته (طي ميليونها سال) است، زيرا ، از دشوارترين راه به هيدروژن مي رسد، نمايشگر دو رواي است که عملا تمامي هيدروژن آزاد از سياره ها فرار کرده است.
منبع خورشيدي آدنوزين تري فسفات
سومين مرحله در اين جريان تکاملي (سوخت و ساز) ، احتمالا تغيير ماده آلي به فسفات آلي به کمک نور (فرايندي که طي آن گياهان سبز انرژي نوراني را به انرژي شيميايي تبديل مي کنند) ، يعني استفاده مستقيم در توليد ATP است. انجام اين عمل مستلزم وجود ماده رنگي کلروفيل(پوروفيرين منيزيم) براي جذب نور ، حضور مواد رنگين ياخته)پروتئينهاي آهن دار) براي تبديل انرژي خارجي ، يعني نور خورشيد ، به انرژي ذخيره اي موسوم به (ATP) است.