نحوه استفاده از برنامه Endnote در روند پژوهش (برگرفته از کتاب آموزش Endnote)

نحوه استفاده از برنامه Endnote در روند پژوهش (برگرفته از کتاب آموزش Endnote)

تذکر: مطالب قید شده در این بخش عینا از کتاب (آموزش جامع مدیریت مراجع مقاله، پروپوزال تحقیقاتی، پایان نامه و کتاب با برنامه Endnote،مهدیزاده، ولی اله، برمکی، سعید. سازمان انتشارات جهاد دانشگاهی. ۱۳۹۰) کپی شده است و ممکن است برای آموزش کامل مطالبی که ذکر شده است نیاز باشد تا به کتاب مراجعه نمایید.

شاید بخواهید بدانید اندنوت چیست؟ قبل از مطالعه مطلب زیر به اینجا مراجعه نمایید

نحوه استفاده از برنامه Endnote در روند پژوهش (برگرفته از کتاب آموزش Endnote)

تحقیق علمی زمانی انجام میشود که روی ایده‌ای جدید کار نمایید و یا در پی حل مشکلاتی از یک تحقیق یا کار بر آیید. برای این کار باید ابتدا همه کارهای قبلی انجام شده در آن زمینه را بررسی نموده و با تحقیق خود به رفع نواقص آن و یا تکمیل آن بپردازید. حال برای یافتن این منابع به صورت جامع و کامل راههای مختلفی وجود دارد. در ابتدای شروع پایاننامه و یا تحقیق پس از تعیین موضوع شما باید همه کارهای تحقیقاتی که در ارتباط با تحقیق شماست پیدا نمایید. اکثر دانشجویان با موتورهای جستجوی معمولی مانند گوگل، یاهو و ... جستجوی منابع را آغاز می‌نمایند که به عنوان اولین گام، مناسب‌ترین راه است (اما کامل نیست! چراکه همه پایگاهها را پوشش نمی‌دهند). در گام دوم به سراغ پایگاههای مقالات علمی مانند Science Direct، Springer و ... می‌روند. اما از بقیه پایگاههای بین رشته‌ای و یا تخصصی غافل می‌شوند (فهرست کامل آن‌ها در این کتاب ذکر شده است). چرا ضرورت دارد تا همه پایگاه‌ها جستجو شود؟ علی رغم اینکه ممکن است منابع برخی پایگاه‌ها مشترک باشد اما برخی از مجلات فقط توسط برخی از پایگاه‌های خاص به فروش میرسند. مثلا مجله Plant Pathology فقط توسط Wiley انتشار می‌یابد. بنابراین ضرورت دارد که همهی پایگاهها جستجو شوند تا بررسی منابع[1] شما جامع باشد. با جستجوی موتورهای معمولی و اختصاصی، شما تعدادی رکورد را می‌بیند که ذخیره می‌نمایید و استفاده می‌کنید. آیا فهرست کاملی از آن‌ها را دارید تا به صورت آفلاین در دسترس داشته باشید؟ برای رفع این مشکل سراغ مجموعه‌هایی مانند CAB (برای دانشجویان کشاورزی) از کتابخانه و یا مجموعهی آنلاین آن می‌روید و چکیدهی همه مقالات را برای خود ذخیره می‌نمایید. راه بهتر و جامعتر این است که با استفاده از برنامهی اندنوت به CAB وصل شوید، مزیت این روش این است که ممکن است مجموعه‌های CAB تا سال معینی مثلا 2011 در دسترس باشد، اما با جستجوی آنلاین، به مقالات منتشر شده تا لحظهی جستجو دسترسی خواهید داشت. شما میتوانید تمام رکوردها را از همهی پایگاه‌های عمومی و اختصاصی با استفاده از این برنامه ذخیره و طبقه‌بندی نمایید و کتابخانه‌هایی که حاوی تمام مقالات مرتبط با کار شما می‌باشد را ذخیره، طبقه‌بندی و مطالعه نمایید. پس به جای گامهای اولیه تحقیق بیایید و مقالات مرتبط با تحقیقتان را با استفاده از روشهای توضیح داده شده در کتاب وارد برنامه نمایید. وقتی تمام منابع وارد شدند، شما میتوانید به مطالعه و گروهبندی آن‌ها بپردازید. برای این کار چندین راه وجود دارد که یکی از آنها استفاده از گروه‌های هوشمند[2] می‌باشد. با استفاده از آن‌ها می‌توان به سراغ مقالات مهمتر و دارای ارتباط بیشتر با موضوع خود رفت و با استفاده از مرتب کردن[3] بر اساس تاریخ، مقالات را از جدید به قدیم و بالعکس مرتب نمایید و با مطالعة عنوان مقالات، آن‌هارا بررسی اولیه نمایید. سپس به سراغ چکیده آن‌ها بروید و با مطالعة سطحی، ببینید متناسب با کار شما هستند یا خیر. اگر مناسب بودند، متن کامل آن‌ها را با استفاده از گزینه‌های Find Full text و یا Find URL موجود در برنامه، تهیه نمایید. حال اگر می‌خواهید آن‌ها را سر فرصت بخوانید به گروه‌های خاصی مانند "مطالعه شد" یا "باید مطالعه شود" منتقل نمایید. حال مشغول نوشتن پروپوزال تحقیقاتی، پایاننامه، مقاله یا کتاب خود هستید، شروع به تایپ نمایید، اگر خواستید از منبعی استفاده کنید، یک فاصله آخر جمله قرار دهید و با انتخاب آن منبع در کتابخانه، با یک کلیک آن را وارد متن نمایید و مشاهده خواهید نمود که به صورت خودکار منابع به متن اضافه می‌شود و در فهرست منابع نیز قرار می‌گیرند.

اگر در حال نوشتن پروپوزال تحقیقاتی، پایاننامه و یا کتاب باشید، شما باید یک سبک نگارش یااستایل[4] برای منابع خود انتخاب کنید (بر اساس سبک نگارش تعریف شده دانشگاه و یا ناشر). اگر استایل آماده داشته باشید (مثلا استایل آماده برای پایاننامه برخی دانشگاه‌ها مثل دانشگاه تربیت مدرس وجود دارد که می‌توانید از کتابخانه تهیه نمایید)، از آن‌ها استفاده نمایید و اگر استایل در دسترس نبود آن را به آسانی با استفاده از روش‌های اشاره شده در کتاب آماده نمایید (و یا این که به آدرس http://www.EndNote.com/support/enstylereq.asp و یا www.EndNote2.blogfa.com  مراجعه کرده و آن را سفارش دهید).

اما اگر در حال نوشتن مقاله باشید باید بر اساس مجلهای که می‌خواهید مقاله را به آن ارسال نمایید، استایل خود را انتخاب نموده و با یک کلیک (همان طور که در کتاب آموزش داده شده است) فرمت مستندات و فهرست مقالات را دقیقا بر اساس آن تغییر دهید. اگر این استایل در برنامه وجود داشت آنرا انتخاب نموده و استفاده نمایید و در غیر این صورت به سایت اندنوت[5] مراجعه نموده و با جستجوی عنوان مجله در بخش EndNote style آن را پیدا نموده و دانلود نمایید و در محل نصب برنامه و یا در پوشه ایجاد شده به نام اندنوت استایل[6] قرار دهید. حال اگر مقالهی شما برای مجلات ایرانی و یا مجلات خارجی که استایل برای آن‌ها تعریف نشده است ارسال می‌شود، لازم است مطابق روش‌های گفته شده به آسانی استایل را طراحی نمایید و در غیر این صورت آن را جهت آماده سازی سفارش دهید.


[1]- Literature Review

[2]- Smart Groups

[3]- Sort

[4]- Style

[5]- www.EndNote.Com

[6]-EndNote Styles

منبع:

1- مهدیزاده، ولی اله، برمکی، سعید. آموزش جامع مدیریت مراجع مقاله، پروپوزال تحقیقاتی، پایان نامه و کتاب با برنامه Endnote، سازمان انتشارات جهاد دانشگاهی. ۱۳۹۰

2- http://fa.wikipedia.org/wiki/%D8%A7%D9%86%D8%AF%D9%86%D9%88%D8%AA

 

فتوسنتز در گیاهان c3,c4,cam

فتوسنتز در گیاهان c3,c4,cam

مقدمه:

فتوستز فرایندی است که طی آن انرژی نورانی خورشید به انرژی شیمیایی تبدیل می شود. که مهمترین پدیده بیولوژیکی روی کره زمین است که منبع انرژی اولیه بشر است. پس فتوسنتز اساس رشد و عملکرد تمام گیا هان زراعی می باشد.

فتوسنتز فقط در گیا هان سازگار از نظر ژنتیکی رخ می دهد.و گاهی متغیر های محیطی نیز ممکن است اثرات محیطی را بپوشاند. از نقطه نظر اصلاح نباتات تلاش برای افزایش عملکرد دانه بدون توجه به مقدارمواد فتوسنتزی قابل دسترس ، به طور کلی شکست خورده است.

فرایند فتوسنتز :

مکان فتوسنتز کلروپلاست ها می باشد.کلروپلاستها ، اجسام رنگدانه داری (کلروفیل) در ستوپلاسم سلولهای برگ و دیگر بافت های سبز می باشند. اختلافات ژنتیکی و محیطی مقادیر نسبی رنگدانه کلروفیل را تغییر داده و برگهایی را تولید می کنند که رنگ سبز تیره تا زرد دارند.

علاوه بر کلروپلاست Co2 , H2o وانرژی نورانی خورشید نیز لازم است تا گلوکز تولید شود. گلوکز به برگها و یا به دانه ها رفته و تغییر شکل می دهد.

کارایی فتو سنتز :

کارایی فتوسنتز در حدود 1% است.یعنی از کل تشعشعات ورودی به یک مزرعه فقط 1% به انرژی شیمیایی تبدیل می شود. رسیدن به کارایی بالا در فتوسنتز امکان پذیر است ولی در شرایط مزرعه بیش از 6% انتظار نمی رود.حد بالای کارایی تا 20% به صورت فرضی محاسبه شده است.

تاریخچه


کربن (واژه لاتین carbo به معنی زغال چوب) در دوران پیشاتاریخ کشف شد و برای مردم باستان که آن را از سوختن مواد آلی در اکسیژن ضعیف تولید می‌‌کردند، آشنا بود.(تولیدزغال چوب).مدت طولانی است که [الماس] به‌عنوان ماده‌ای زیبا و کمیاب به حساب می آید .

فولرن ،آخرین آلوتروپ شناخته شده کربن در دهه 80 به‌عنوان محصولات جانبی آزمایشات پرتو مولکولی کشف شدند. گیاهان CAM روزنه های خود را در شب باز و در روز می بندند. و این خود کارایی مصرف آنها را افزایش می دهد. و تلفات آب به حداقل می رسد.

از آنجا که مسیرورود و خروج CO2 همان روزنه های برگ است. پس اسیمیلاسیون CO2 در شب صورت می گیرد و این همزمان با کربوکسیلاسیون فسفو اینول پیرووات و اگزالواستات (که تبدیل به مالات میشود) اتفاق می افتد. (فسفواینول پیرووات از تجزیه کربوهیدراتهابوسیله مسیر گلیکولیت حاصل می شود) اسید C4 بصورت مالیک اسید در واکوئلهای بزرگ گیاهان CAM تجمع می یابد.

باشروع روز، روزنه ها بسته می شوندو از تلفات آب و جذب بیشتر CO2 جلوگیری می کنند.و مالیک اسید ذخیره شده در واکوئلها مصرف می شود. دکربوکسیلاسیون از طریق عمل آنزیم مالیکNADP برروی مالات یا فسفواینول پیرووات کربوکسی کیناز برروی اگزالواستات صورت می گیرد. CO2 آزاد شده نیز وارد چرخه

C3 PC شده و تبدیل به کربوهیدرات می شود.

بالارفتن CO2 درونی، اکسیژناسیون ریبولوز بی فسفات رامتوقف نموده و به کربوکسیلاسیون کمک می کند.اسید C3 باقیمانده در اثر دکربوکسیلاسیون، ابتدا به تریوز فسفات و سپس به نشاسته یا قند تبدیل می شود.

لازم به ذکر است که طبق مشاهدات به عمل آمده مشخص شده است که کربوکسیلاز در شب فعال و در طی روز غیرفعال بوده در عوض دکربوکسیلاز در طی روز فعال و در شب غیر فعال است.

اولین مرحله در واکنشهای تاریکی فتوسنتز، کربوکسیلاسیون یک پذیرنده 5 کربنی ( ریبولوز 1و5 - بی فسفات ) است که نتیجه آن، تولید یک ماده حدواسط در چرخه PCR  است. اولین مرحله واکنش تاریکی را آنزیمی بنام « ریبولوز بی فسفات کربوکسیلاز- اکسیژناز» که مخفف آن رابیسکو ( RUBISCO ) است، کاتالیز میکند.

یکی از خصوصیات جالب رابیسکو اینست که نه تنها میتواند ریبولوز1و5- بی فسفات را کربوکسیله کند، بلکه آن را اکسید نیز میسازد. که این آغازگر فرایند دیگری بنام تنفس نوری است. این بدلیل آنست که کربوکسیلاسیون و اکسیژناسیون هر دو در یک محل فعال از آنزیم اتفاق می افتد. البته باید متذکر شد که میل ترکیبی رابیسکو نسبت به CO2 بسیار بیشتر از O2 است.

 یعنی در هوای آزاد نسبت کربوکسیلاسیون به اکسیژناز 3 به 1 است. بجز غلظت CO2، درجه حرارت نیز بر حلالیت نسبی CO2 و O2 تاثیر دارد. افزایش دما باعث افزایش تنفس نوری در مقایسه با فتوسنتز میشود.

البته چرخه دیگری در گیاهان بنام چرخه C2PCO وجود دارد. که فسفو گلیکولات ساخته شده در جریان اکسیژناسیون ریبولوز بی فسفات وارد آن شده و می تواند طی واکنشهای پیاپی که در کلروپلاست، پراکسی زوم و میتوکندری صورت میتواند حدود 75 درصد از کربن را دوباره بازیافت کرده و به چرخه C3PCR بازگرداند.

از آنجا که فتوسنتز و تنفس نوری در خلاف جهت یکدیگر فعالیت میکنند. لذا تنفس نوری باعث اتلاف CO2 در سلولهایی میشود که همزمان از طریق چرخه PCR به تثبیت CO2 مشغولند.رقابت میان واکنشهای کربوکسیلاسیون و اکسیژناسیون در گیاه باعث کاهش کارایی ترمودینامیکی فتوسنتز می شود. بعنوان مثال در هوای معمولی، اکسیژناسیون ریبولوز بی فسفات و وجود چرخه , PCO انرژی لازم برای تثبیت یک مول CO2 را از521 میکروژول به 867 کیلو ژول افزایش میدهد.

 * تعدادی از گیاهان فاقد تنفس نوری اند. این وضعیت بخاطر متفاوت بودن خاصیت رابیسکو نیست. بلکه بدلیل وجود مکانیسمی است که CO2 را در محیط عمل رابیسکو تغلیظ میکند.هنگامیکه غلظت CO2 در حد بالایی باشد،واکنش اکسیداسیون متوقف میشود.

- سه مکانیسم برای تغلیظ  CO2 در محل کربوکسیلاسیون وجود دارد.

1- پمپ CO2 : که در گیاهان آبی، جلبکها و سیانوباکتری ها دیده شده است. این پمپها با صرف

انرژی حاصل از واکنشهای نوری باعث تجمع کربن غیر آلی بصورت CO2/HCO3- میشوند. که این امر موجب اختلاف بسیار زیاد کربن غیر آلی درون سلول نسبت به بیرون(حتی بیشتر از3 برابر) میشود.این پمپها در سلواهایی که در غلظت بالای CO2 رشد میکنند وجودندارد.

نتیجه متابولیکی افزایش  CO2اینستکه مانع ازاکسیژناسیون ریبولوز بی فسفات میشود.و ازاینروباعث توقف تنفس نوری میشود.

2- چرخه اسیمیلاسیون کربن فتوسنتزی C4 (PCA) :

این چرخه هم در گیاهان تک لپه و هم در دو لپه ایهادیده شده ولی بیشتر در گونه هایی از غلات، چغندریان و جگنها دیده میشود.گیاهان این چرخه از نظر آناتومی با سایر گیاهان متفاوتند.

مشاهده ساختمان برگ گیاهان  C4، C3و CAM

تقسیم بندی گیاهان براساس نحوه فتوسنتزو محتوای کلروپلاستی وانزیمیو اولینترکیبات حامل از تثبیت co2به دو گروه :

الف) گیاهان C3:مثل جلبک خزه ها وهمه درختان ،اولین ترکیبات حامل از تثبیت co2 :اسید فسفرگلیسریک c2

ب)  گیاهان C4: مانند ذرت ، نيشكر، تاج خروس همگی علفی اند اولین ترکیبات حامل از تثبیت

co2:اسید اگزالواستیک

در گياهان مختلف سبزينه دار كه فتوسنتز انجام مي شود و در نتيجه مواد غذايي ساخته مي شود اولين محصول پايدار بدست آمده در آنها متفاوت است . بدين معني كه اولين محصول پايدار در دسته اي از گياهان يك اسيد سه كربني به نام «3- فسفو گليسيريك اسيد» و دسته اي ديگر يك اسيد چهار كربني به نام« دي كربوكسيليك اسيد » ( داراي دو عامل كربوكسيل COOH- ، ‌مثل اسيد اگزالواستيك ،‌اسيد ماليك ، اسيد آسپارتيك ) مي باشد .

گياهاني كه اولين محصول پايدار حاصل از فتوسنتز آن ها يك اسيد سه كربنه است گياهان C3 و آندسته كه اولين محصول پايدار آن ها چهار كربني است گياهان C4 ناميده مي شوند . گياهان C4  در مقايسه با گياهان C3 از بازدهي فتوسنتزي بيشتري برخوردارند . بر همين پايه علف هاي هرز C4 نسبت به علف هاي هرز C3 قدرت رقابت زيادتري دارند . در تعدادي از گياهان گوشتي فرآيند فتوسنتزي ديگري مشاهده شده كه در شرايط رطوبت كم روزنه ها در شب باز شده و Co2 جذب مي كنند و در روز بسته مي شوند لذا شدت تعرق گياه خيلي كم مي شود . به اين نوع مكانيسم ، متابوليسم كراسولايي (CAM) "Crassulation asid metabolism" مي گويند مانند آگاو ،‌آناناس ،‌كاكتوس . كليه ي گياهان (CAM) جزء‌گياهان گوشتي غير نمكدوست هستند و عموما با محيط هاي خشك  سازگارند . برخي از گياهان C3 عبارتند از گندم ،‌جو ،‌سلمه ،‌ترشك ، توق ، تاتوره ،‌يولاف،‌بارهنگ و پنيرك .

از گياهان C4 مانند ذرت ، نيشكر ، اويار سلام ،‌ قياق ،‌سوروف ، پنجه مرغي ،‌تاج خروس ،‌خرفه ،‌سورگوم ،‌علف شور ،‌خار خسك .

تیپ C3 که در اکثر گیاهان دیده می شود، به دلیل اینکه CO2 تثبیت شده در ساختار گیاه، در اولین مرحله از واکنش‌های تاریکی فتوسنتز (چرخه کالوین) توسط آنزیم روبیسکو منجر به تولید قندی 3 کربنی موسوم 3- فسفو گلیسر آلدهید می‌شود، به این نام معروف است. این گروه از گیاهان با یک مشکل جدی مواجه هستند.

تنفس نوری

این فرآیند که به دلیل عملکرد دوگانه روبیسکو (کربوکسیلاسیون و اکسیژناسیون) رخ می‌دهد، منجر به کاهش بازده فتوسنتز در گیاهان می‌شود. دلیل این هم که این گیاهان بر خلاف گیاهان تیپ C4 قادر به حذف چنین فرآیندی نیستند به ساختار این دو دسته گیاهی برمی‌گردد: در گیاهان C4 محل انجام مرحله روشنایی فتوسنتز (مراحل مربوط به انتقال الکترون بین فتوسیستم I و II که منجر به رهاسازی اکسیژن به عنوان عامل آغازگر تنفس نوری می‌شود)

 از محل انجام واکنش‌های مرحله تاریکی (چرخه کالوین که روبیسکو در این چرخه قرار دارد) جدا است! به طوری که واکنش اول در سلول‌های مزوفیلی و واکنش دوم در سلول‌های غلاف آوندی رخ می‌دهد. این امر موجب می شود که اصولا اکسیژن آزاد شده طی واکنش‌های روشنایی در مزوفیل به دلیل عدم دسترسی به روبیسکو به عنوان عامل تنفس نوری (که در درون سلول‌های غلاف آوندی است)قادر به ایجاد تنفس نوری نباشد .

در طرف مقابل ، در گیاهان C3 چنین تمایز سلولی در انجام دو مرحله فتوسنتزی وجود نداشته و هر دو مرحله در سلول مزوفیلی رخ داده و اکسیژن آزاد شده طی واکنش‌های نوری به عنوان سوبسترایی رقابتی با دی اکسید کربن بر روی جایگاه فعال آنزیم روبیسکو به رقابت پرداخته و منجر به وقوع تنفس نوری شود که این امر موجب کاهش بازده  فتوسنتز در این گیاهان می شود .  اصولا میزان تمایل روبیسکو  به دی اکسید کربن خیلی بیشتر از تمایل آن به اکسیژن است. ولی به هر حال همین مقدار تنفس نوری هم میتواند منجر به کاهش بازده تنفس نوری شود.

در گياهان مختلف سبزينه دار كه فتوسنتز انجام مي شود و در نتيجه مواد غذايي ساخته مي شود اولين محصول پايدار بدست آمده در آنها متفاوت است . بدين معني كه اولين محصول پايدار در دسته اي از گياهان يك اسيد سه كربني به نام «3- فسفو گليسيريك اسيد» و دسته اي ديگر يك اسيد چهار كربني به نام« دي كربوكسيليك اسيد » ( داراي دو عامل كربوكسيل COOH- ، ‌مثل اسيد اگزالواستيك ،‌اسيد ماليك ، اسيد آسپارتيك ) مي باشد . گياهاني كه اولين محصول پايدار حاصل از فتوسنتز آن ها يك اسيد سه كربنه است گياهان C3 و آندسته كه اولين محصول پايدار آن ها چهار كربني است گياهان C4 ناميده مي شوند . گياهان C4 در مقايسه با گياهان C3 از بازدهي فتوسنتزي بيشتري برخوردارند . بر همين پايه علف هاي هرز C4 نسبت به علف هاي هرز C3 قدرت رقابت زيادتري دارند . در تعدادي از گياهان گوشتي فرآيند فتوسنتزي ديگري مشاهده شده كه در شرايط رطوبت كم روزنه ها در شب باز شده و Co2 جذب مي كنند و در روز بسته مي شوند لذا شدت تعرق گياه خيلي كم مي شود . به اين نوع مكانيسم ، متابوليسم كراسولايي (CAM) "Crassulation asid metabolism" مي گويند مانند آگاو ،‌آناناس ،‌كاكتوس . كليه ي گياهان (CAM) جزء‌گياهان گوشتي غير نمكدوست هستند و عموما با محيط هاي خشك سازگارند .

برخي از گياهان C3 عبارتند از گندم ،‌جو ،‌سلمه ،‌ترشك ، توق ، تاتوره ،‌يولاف ،‌بارهنگ و پنيرك .
  مقایسه فتوسنتز در گیاهان C3 ، C4 و CAM


C3

C4

CAM

آنزیم تثبیت کننده CO2

روبیسکو

غیراز روبیسکو

غیر از روبیسکو

محل تثبیت CO2

بستره ي کلروپلاست

سلول های میانبرگ

واکوئل سلول

مرحله تثبیت CO2

چرخه کالوین

قبل از چرخه کالوین

قبل از چرخه کالوین

زمان باز شدن روزنه های هوایی

روز

روز

شب

زمان تثبیت CO2

روز

روز

شب

زمان چرخه کالوین

روز

روز

روز

زمان تولید قند در فتوسنتز

روز

روز

روز

مرحله ساخته شدن قند در فتوسنتز

چرخه کالوین

چرخه کالوین

چرخه کالوین

محل ساخته شدن قند در فتوسنتز

تمام سلول های فتوسنتز کننده

سلول های غلاف آوندی

تمام سلول های فتوسنتزکننده

اولین ترکیب پایدار حاصل از تثبیت CO2

اسید سه کربنی

اسید چهار کربنی

اسید چهارکربنی

 

گیاهان C3 و C4 :

زمانی که اولین محصول فتوسنتزی در گیاه ،یک ترکیب 3 کربنه (C3) باشد از مسیر کالوین بنسون و اگر 4 کربنه (C4) باشد از طریق هچ اسلک است .که برای اصلاع گیاهان C4 به کار برده می شود. و انحراف از نوع فتوسنتز C4 را متابولیسم اسید کراسولاسه یا CAM می نامند که با مناطق خشک سازگاری دارد.

گیاهان C4 (ذرت ، سورگوم ، ارزن) در شرایط گرم و نور زیاد کارایی بیشتری از گیاهان C3 (غلات) دارند . در مجموع کارایی آنها (C4) حدود 40 % است.

تمام گیاهان به انرژی نیاز دارند و این انرژی از طریق تنفس به دست می آید :

2 نوع تنفس وجود دارد :

1- مستقل از نور : قند و کربو هیدرات تولید شده در فتوسنتز را به CO2 و H2O تبدیل می کند. از نظر زراعی تنفس نشان دهنده تلفات است و باید به حداقل برسد که درست نیست زیرا تنفس لازم است تا انرژی برای رشد و بقای گیاه فراهم شود و تنفس بیش از نیاز برای تولید عملکرد زاید است . پس اهمیت سرعت اسیمیلاسیون خالص بیش از سرعت فتوسنتز و تنفس است.

2 تنفسی که در حضور نور و در گیاهان C3 مشاهده می شود و ظاهرا در گیاهان C4 وجود ندارد.

اختلافات گیاهان C3 و C4 :

1 گیاهان C4 نسبت به C3 به نورهای با شدت بالا واکنش نشان می دهند.(2 برابر گیاهان C3)

2 گیاهان C4 با کارایی بیشتری از CO2 استفاده می کنند و در شدت نور ثابت و نسبتا زیاد قادرند CO2 اطراف را به ppm 10 – 0 کاهش دهند. که این نقطه جبران است . در حالی که در C3 برابر

ppm 150 -50 co2 است . نقطه جبرانی پایین نشان دهنده کارایی زیاد فتوسنتز است .

3- گیاهان C4 سرعت اسیمیلاسیون خالص بالاتری از C3 دارند که به خاطر عدم وجود تنفس نوری است .

4 درجه حرارت بر روی C4 تاثیر مطلوب ، و بر روی گیاهان C3 تاثیر نا مطلوبی دارد . تا دمای 0 تا 35 درجه سانتیگراد سرعت تنفس به ازای هر 10 درجه سانتیگراد افزایش حدود 2 تا 4 برابر افزایش می یابد. بسیاری از گیاهان C3 در محدوده دمایی 25 تا 35 درجه سانتیگراد تولیدی ندارند ولی گیاهان C4 افزایش نولید دارند.

5 در گیاهان C4 کارایی مصرف آب بیش از گیاهان C3 است . میانگین ماده خشک تولید شده برای هر 1000 گرم آب مصرفی ، 29/3 گرم برای C4 و 54/1 گرم برای C3 می باشد.

6 سرعت انتقال با سرعت فتوسنتز همبستگی دارد زیرا انتقال آهسته می تواند عملکرد را محدود کند . در برگهای گیاهان C4 انتقال 2 برابرسریعتر از برگهای C3 است.

7 حداکثر رشد گیاهان C4 بیشتر از گیاهان C3 است (به جز چند استثناء). وقتی طول فصل رشد متوسط در نظر گرفته می شود سرعت رشد C3 برابر 13 گرم در متر مربع در روز بوده و برای گیاهان C4 برابر 22 گرم در متر مربع در روز می باشد. با محصور کردن گیاهان C3 و C4 در ظرف در بسته دارای نور اختلاف در تنفس نوری را می توان نشان داد . چون C4 نقطه جبرانی پایین تری از گیاهان C3 دارند زمانی که گیاهان C4 از CO2 مصرف می کنند گیاهان C3 از بین می روند.

فتوسنتز و عملکرد غلات :

چون کربن جزء اصلی ماده خشک گیاه است ، پس منطقی است که افزایش سرعت اسیمیلاسیون دی اکسید کربن باعث افزایش عملکرد شود. از حدود سالهای 1960 سرعت اسیمیلاسیون Co2 نقطه شروعی برای توجیه بهبود عملکرد گیاهان زراعی بوده است و درک اینکه چرا افزایش سرعت فتوسنتز برگ ممکن است عملکرد را افزایش ندهد اساس درک فیزیولوژی در رابطه با رشد و نمو آن ها می باشد.

تمام مواد فتوسنتزی تولید شده به سمت عملکرد اقتصادی یعنی دانه هدایت نمی شود . بخشی به ریشه ها ، برگ ها ، ساقه ها و وظایف حیاتی گیاه مصرف می شود . لذا  اندازه گیری سرعت  فتوسنتز یک برگ از یک گیاه منفرد، نمی تواند نشان دهنده کل سرعت فتوسنتز آن گیاه با جمعیت گیاهی باشد.

زلیچ دریافت که اندازه گیری فتوسنتز گمراه کننده است  و دریافت که عملکرد گیاه زراعی رابطه نزدیکی با اسیمیلاسیون  فتوسنتزی خالص Co2 دارد که در طول فصل محاسبه شده باشد .و همچنین آزمایشات ، بر روی غنی سازی Co2 حاکی از آن است که افزایش فتوسنتز خالص عملکرد را افزایش می دهد.

 اختلاف در کارایی فتوسنتز :

برخی گونه های گیاهی زراعی سرعت فتوسنتزی متفاوتی را نشان می دهند . بعنوان مثال سورگوم و ذرت ظرفیت بهره برداری انرژی نورانی خورشید را با سرعت تقریبا 50 تا 66 % بیشتر از توتون دارند . که بخش عمده ای از این اختلاف را می توان با اختلافات در تنفس توضیح داد.

نمو گیاه و فتو سنتز :

آندوسپرم بذر غلات زمانی تا مین کننده غذا است که بذر شروع به جوانه زنی و کلئوپتیل خارج و اولین برگ شروع به فتوسنتز نمایید. در شرایط گرم و مرطوب طی 4 تا 5 روز ، و در شرایط سرد و خنک تا 2 هفته طول می کشد. البته عمق کاشت و وجود سله در فواصل بین بذر کاری و سبز شدن نیز تاثیر دارد. بعد از سبز شدن و رشد سریع سطح فتوسنتزی کود را به صورت نواری در 2 طرف بذر و کمی پایین تر قرار می دهند.

اگربذر در تماس مستقیم با کود قرار بگیرد ، ممکن است سبب ضایعات اسمزی شود . مرحله رشد رویشی (جوانه زنی گلدهی) ، که طی آن میانگره ها و تعداد پنجه ها ، تعداد و اندازه سلول ها ، طول میانگره ها تحت تاثیر طول مدت مرحله رویشی که خود نیز تحت تاثیر درجه حرارت و طول روز است .افزایش قطر ساقه ها از طریق بزرگ شدن سلول ها زمانی رخ می دهد که ساختمان های ضروری شکل گرفته اند.

مرحله رسیدگی از زمان تلقیح گل تا بلوغ بذر می باشد.این مرحله برای توسعه دانه بحرانی است و مصرف آب ، سطح برگ برای جذب موثر نور خورشید ، یا اضافه کردن مواد غذایی ممکن است فتوسنتز را برای توسعه دانه افزایش دهد ،بدون آنکه رشد رویشی را تحریک کند.

عملکرد وزن خشک نهایی دانه حاصل سرعت پر شدن دانه و طول مدت پر شدن دانه می باشد. و زمانی که در وزن خشک دانه افزایشی صورت نمی گیرد محصول به بلوغ فیزیولوژیکی خود رسیده است . که با نمونه برداری از دانه و خوشه می توان توقف افزایش وزن خشک و مرحله برداشت را تعیین نمود.

روابط مخزن منبع :

برای تولید موفقیت آمیز غلات باید به بذر کاری در زمان مناسب و ظرفیت فتوسنتزی مناسب برای تولید دانه توجه شود.

در جو، منبع و مخزن به نظر نمی رسد که هیچ کدام محدودیتی برای عملکرد دانه داشته باشند و اثرات متقابل فید بک ها نشان می دهد که سرعت فتوسنتز ممکن است برای نیاز دانه تعدیل شود. در غلات اندازه مخزن به تعداد دانه در سنبلچه و حجم دانه و وزن آن بستگی دارد . مطالعه ای در گندم و برنج نشان می دهد که ظرفیت ذخیره ممکن است محدودیت اصلی برای عملکرد دانه باشد

اصلاح مقاومت به خشکی در گیاهان زراعی


تنش خشکی مانع از تظاهر کامل پتانسیل ژنتیکی گیاهان زراعی می شود و از اینرو موجب کاهش تولیدات کشاورزی می گردد. در مقاومت به خشکی سه مکانیزم دخالت دارند که عبارتند از فرار از خشکی، اجتناب از خشکی و تحمل به خشکی. صفات مختلف مورفولوژیکی، فیزیولوژیکی و بیوشیمیایی باعث ایجاد مقاومت به خشکی می شوند. نحوه توارث (تک ژنی و چند ژنی بودن) و نوع عمل ژن (افزایشی و غیرافزایشی بودن) در صفات مورفولوژیکی و فیزیولوژیکی متفاوت است. با این حال، ژنهای مسؤل بیوسنتز انواع مواد محلول سازگار (compatible solutes) شناسایی و از موجودات مختلفی همچون گیاهان، مخمر، موش و انسان همسانه سازی (کلون) شده اند. روشهای اصلاحی مختلفی برای مقاومت به خشکی وجود دارند که هر یک دارای مزایا و معایبی هستند. در هر برنامه اصلاحی وجود روشهای کارآمد برای شناسایی و انتخاب ژنوتیپ های مناسب ضروری می باشد. شناسایی و انتقال ژنهای مسئول بیوسنتز متابولیت های متعددی همچون پرولین، ترهالوز، و پلی آمینها از موجودات مختلف به گیاهان زراعی از طریق مهندسی ژنتیک بطورموفقیت آمیزی صورت گرفته است. به عنوان مثال، ژن hva1  جو که مسئول سنتز پروتئین های فراوان در اواخر دوره جنین زایی (Late embryogenesis abundant proteins) می باشد از طریق روش انتقال تصادفی (shotgun) به برنج منتقل شده و منجر به تولید برنج تراریخت گردیده است.

 

تنش خشکی مانع از تظاهر کامل پتانسیل ژنتیکی گیاهان زراعی می شود و از اینرو موجب کاهش تولیدات کشاورزی می گردد. در مقاومت به خشکی سه مکانیزم دخالت دارند که عبارتند از فرار از خشکی، اجتناب از خشکی و تحمل به خشکی. صفات مختلف مورفولوژیکی، فیزیولوژیکی و بیوشیمیایی باعث ایجاد مقاومت به خشکی می شوند. نحوه توارث (تک ژنی و چند ژنی بودن) و نوع عمل ژن (افزایشی و غیرافزایشی بودن) در صفات مورفولوژیکی و فیزیولوژیکی متفاوت است. با این حال، ژنهای مسؤل بیوسنتز انواع مواد محلول سازگار (compatible solutes) شناسایی و از موجودات مختلفی همچون گیاهان، مخمر، موش و انسان همسانه سازی (کلون) شده اند. روشهای اصلاحی مختلفی برای مقاومت به خشکی وجود دارند که هر یک دارای مزایا و معایبی هستند. در هر برنامه اصلاحی وجود روشهای کارآمد برای شناسایی و انتخاب ژنوتیپ های مناسب ضروری می باشد. شناسایی و انتقال ژنهای مسئول بیوسنتز متابولیت های متعددی همچون پرولین، ترهالوز، و پلی آمینها از موجودات مختلف به گیاهان زراعی از طریق مهندسی ژنتیک بطورموفقیت آمیزی صورت گرفته است. به عنوان مثال، ژن hva1  جو که مسئول سنتز پروتئین های فراوان در اواخر دوره جنین زایی (Late embryogenesis abundant proteins) می باشد از طریق روش انتقال تصادفی (shotgun) به برنج منتقل شده و منجر به تولید برنج تراریخت گردیده است. فقدان یک رهیافت تلفیقی و روشهای دقیق غربال کردن، دانش کم درباره اساس ژنتیکی مقاومت به خشکی،  همبستگی منفی بین مقاومت به خشکی و عملکرد، و نبود ژنهای مناسب برای تولید گیاهان تراریخت از عوامل اصلی محدود کننده اصلاح ژنتیکی مقاومت به خشکی  می باشند. در برنامه های تحقیقاتی آینده برای مقاومت به خشکی لازم است موارد زیر لحاظ شود:  جستجو برای یافتن تنوع ژنتیکی وسیع در صفات مرتبط با مقاومت به خشکی، انتقال همزمان چندین ژن از طریق روشهای اصلاحی متداول یا مهندسی ژنتیک، استفاده از تکنیک  RNA ناهمسو ، ارزیابی پلی پپتید های القاء شده در شرایط تنش خشکی واستفاده از یک رهیافت تلفیقی.

            خشکی در واقع یک رویداد هواشناختی است که با عدم وقوع بارندگی در یک دوره زمانی همراه می باشد، دو‌‌‎‎ره ای که به اندازه کافی بلند است تا باعث تخلیه رطوبتی خاک و تنش کمبود آب همراه با کاهش پتانسیل آب در بافتهای گیاهی گردد. اما از دیدگاه کشاورزی، خشکی عبارت است از ناکافی بودن مقدار و توزیع آب قابل استفاده  در طی دوره رشد گیاه که این امر موجب کاهش بروز توان کامل ژنتیکی گیاه می گردد. خشکی عامل اصلی محدود کننده تولیدات کشاورزی می باشد که گیاه را از رسیدن به حداکثر توان محصولدهی باز می دارد . اثر خشکی بر عملکرد و درآمد نهایی زارع کاملا شناخته شده است. اغلب گیاهان زراعی بویژه در طی دوره گلدهی تا نمو بذر به تنش کمبود آب حساسند. حتی گیاهانی مانند ارزن دم روباهی، سورگوم و لوبیا چشم بلبلی نیز  که در نواحی خشک و نیمه خشک کشت می شوند در مرحله زایشی تحت تاثیر تنش خشکی قرار می گیرند.

 در کشاورزی، مقاومت به خشکی عبارت است از  توانایی یک گیاه زراعی برای تولید محصول اقتصادی با حداقل کاهش عملکرد در شرایط تنش نسبت به شرایط بدون تنش. برای اینکه متخصص ژنتیک بتواند ژنوتیپ های برتر را از طریق روشهای متداول اصلاح نباتات و یا با استفاده از بیوتکنولوژی اصلاح نماید لازم است درک درستی از اساس ژنتیکی مقاومت به خشکی داشته باشد.

 

منبع :اباذر رجبی، عضو هیئت علمی مؤسسه تحقیقات اصلاح و تهیه بذر چغندرقند، کرج

مکانیزم های مقاومت به خشکی

از نظر ژنتیکی، مکانیزم های مقاومت به خشکی را می توان به سه دسته تقسیم کرد که عبارتند از فرار از خشکی، اجتناب از خشکی و تحمل به خشکی. با این وجود، گیاهان زراعی معمولا بیش از یک مکانیزم را برای مقاومت در برابر خشکی بکار  می گیرند. اجتناب از خشکی عبارت است از توانایی یک گیاه برای کامل کردن چرخه زندگی خود قبل از گسترش تنش کمبود آب در خاک و گیاه. این مکانیزم شامل توسعه سریع فنولوژیک (زود گلدهی و زود رسی)، انعطاف پذیری نموی (تنوع در طول دوره رشد بسته به شدت تنش کمبود آب) و انتقال فراورده های فتوسنتزی ما قبل گلدهی به دانه. 

اجتناب از خشکی عبارت است از توانایی گیاه برای حفظ پتانسیل آب نسبتا بالا در بافتها علی رغم وجود کمبود رطوبت در خاک. تحمل به خشکی عبارت است از توانایی گیاه برای مقابله با کمبود آب با پایین آوردن پتانسیل آب بافتها. اجتناب از خشکی از طریق مکانیزم های بهبود جذب آب، ذخیره سازی آب در سلولهای گیاهی و کاهش از دست رفتن آب تحقق می یابد. واکنش گیاهان در برابر تنش کمبود آب تعیین کننده میزان تحمل به خشکی آنهاست. به عنوان مثال، برخی ژنوتیپ های چغندر قند که ریشه های عمیق تری دارند قادر به جذب آب بیشتری بوده و دیرتر پژمرده می شوند و در شرایط جشکی تنوع ژنتیکی برای میزان پژمردگی، سرعت رشد برگ، تنظیم اسمزی و هدایت روزنه ای در واریته های مختلف چغندر قند مشاهده شده است.

اجتناب از خشکی با دو روش صورت می گیرد: ۱) حفظ آماس با افزایش عمق ریشه، سیستم ریشه ای کارآمد و افزایش هدایت هیدرولیکی، ۲) کاهش هدر رفتن آب با کاهش هدایت اپیدرمی (روزنه ای و عدسی)، کاهش جذب نور از طریق  لوله ای شدن یا تاخوردن برگها، و کاهش سطح برگ برای پایین آوردن میزان تبخیر.در شرایط تنش خشکی، گیاهان با متعادل کردن حفظ آماس و کاهش هدر رفتن آب زنده می مانند. مکانیزم های تحمل به خشکی عبارتند از حفظ آماس از طریق تنظیم اسمزی (فرایندی که باعث تجمع مواد محلول در سلول   می گردد)، افزایش اتساع پذیری سلول، کاهش اندازه سلول و تحمل در برابر آب کشیدگی  از طریق مقاومت پروتوپلاسمی. 

متاسفانه اغلب این سازگاریها دارای معایبی هستند. ژنوتیپی که دوره رشد کوتاهی دارد معمولا کم محصول تر از ژنوتیپ دیگری با دوره رشد معمولی می باشد. مکانیزم هایی که باعث مقاومت به خشکی از طریق کاهش هدررفتن آب می شوند (مانند بسته شدن روزنه ها و کاهش سطح برگ) معمولا منجر به کاهش جذب دی اکسید کربن     می گردند. تنظیم اسمزی با حفظ آماس گیاه مقاومت به خشکی را افزایش می دهد اما افزایش غلظت مواد محلول که تنظیم اسمزی را موجب می شود می تواند علاوه بر انرژی لازم برای تنظیم اسمزی اثرات نامطلوبی نیز درپی داشته باشد. درنتیجه، سازگاری گیاه باید ضمن حفظ محصولدهی مناسب، منعکس کننده تعادل میان فرار، اجتناب و تحمل به خشکی باشد.

ژنتیک مقاومت به خشکی

مقاومت به خشکی صفت پیچیده ای است که بروز آن بستگی به عمل و عکس العمل میان صفات مختلف مورفولوژیکی (زودرسی، کاهش سطح برگ، لوله ای شدن برگ، میزان موم، سیستم ریشه ای کارآمد، ریشک دار بودن، پایداری عملکرد و کاهش پنجه زنی)، فیزیولوژیکی (کاهش تعرق، افزایش راندمان مصرف آب، بسته شدن روزنه ها و تنظیم اسمزی)، و بیوشیمیایی (تجمع پرولین، پلی آمین، ترهالوز و غیره، افزایش فعالیت آنزیم نیترات ردوکتاز وافزایش ذخیره سازی کربوهیدراتها) دارد. مکانیزم های ژنتیکی کنترل کننده این صفات چندان شناخته شده نیستند.

            شناسایی ژنهای کنترل کننده صفات مورفولوژیکی و فیزیولوژیکی و محل آنها در روی کروموزومها امکان پذیر بوده و نحوه توارث آنها و ماهیت عمل ژن گزارش گردیده است. توارث چندژنی خصوصیات ریشه بوسیله Ekanayake و همکاران گزارش شده است. طول و تراکم ریشه ها بوسیله آللهای غالب و ضخیم بودن راس ریشه بوسیله آللهای مغلوب کنترل می شود. با این وجود، لوله ای شدن برگ و تنظیم اسمزی وراثت تک ژنی نشان داده اند. Tomar و Prasad یک ژن مقاومت به خشکی بنام Drt1 را در برنج گزارش دادند که با ژنهای ارتفاع بوته، رنگدانه و ریشک دار بودن پیوستگی دارد و دارای اثر پلیوتروپی بر روی سیستم ریشه می باشد. در لوبیا چشم بلبلی نیز گزارش شده است که مقاومت به خشکی بوسیله یک ژن غالب کنترل می شود .

            اگرچه گزارشات دیگری در این زمینه برای سایر صفات وجود دارد، تحقیقات بیشتری لازم است تا کنترل ژنتیکی صفات مورفولوژیکی و فیزیولوژیکی موثر در مقاومت به خشکی روشنتر شود.

            علاوه بر تغییرات مورفولوژیکی و فیزیولوژیکی، تغییرات بیوشیمیایی نیز از جمله القای بیوسنتز مواد محلول سازگار روشی برای بیان وقوع تنش خشکی می باشد. در شرایط تنش خشکی، گیاهان سعی می کنند محتوای آب خود را با انباشته کردن مواد محلول متعدد که غیر سمی بوده و خللی در فرایندهای گیاه ایجاد نمی کنند حفظ نمایند. به این خاطر این مواد را مواد محلول سازگار می نامند. بعضی از آنها عبارتند از فروکتان، ترهالوز، پلیول ها، گلایسین بتایین، پرولین و پلی آمینها. ژنهای مختلفی که مسئول آنزیمهای دخیل در بیوسنتز این مواد محلول هستند شناسایی شده و از موجودات مختلف از جمله باکتریها، مخمر، انسان و گیاه همسانه سازی شده اند که در قسمت های بعدی همین مقاله مورد بحث قرار خواهند گرفت.

اصلاح مقاومت به خشکی  

سه روش برای اصلاح مقاومت به خشکی وجود دارد. روش اول عبارت است از اصلاح برای عملکرد بالا در شرایط بدون تنش. از آنجایی که انتظار می رود حداکثر پتانسیل ژنتیکی عملکرد در شرایط بدون تنش تحقق یابد و همبستگی مثبت بالایی بین عملکرد در شرایط تنش و بدون تنش وجود دارد، ژنوتیپی با عملکرد بالا در شرایط بدون تنش عملکرد نسبتا" بالایی نیز درشرایط تنش خواهد داشت. این فلسفه اصلی این روش می باشد. با این وجود، مفهوم بروز حداکثر پتانسیل ژنتیکی در شرایط بدون تنش مورد بحث می باشد زیرا اثر متقابل ژنوتیپ و محیط می تواند مانع از رسیدن ژنوتیپ پر محصول به عملکرد بالا در شرایط تنش خشکی گردد. بنابراین، روش دوم یعنی اصلاح برای عملکرد بالا در شرایط تنش خشکی واقعی پیشنهاد شده است اما مشکل این روش آن است که شدت تنش خشکی از سالی به سال دیگر و در نتیجه، فشار انتخاب محیطی بر روی مواد اصلاحی از نسلی به نسل دیگر بسیار متغیر است. این مسأله همراه با وراثت پذیری پایین عملکرد موجب پیچیدگی و کند شدن برنامه اصلاحی می گردد.

            روش سوم که می تواند جایگزینی برای دو روش مذکور باشد عبارت است از اصلاح مقاومت به خشکی در ژنوتیپ های پر محصول با وارد کردن مکانیزم های مورفولوژیکی و فزیولوژیکی مقاومت به خشکی. اما انتقال مقاومت به خشکی به ژنوتیپ های پر محصول پیچیده است زیرا اساس فیزیولوژیکی و ژنتیکی سازگاری به شرایط تنش خشکی کاملا" معلوم نیست. برعکس، اصلاح پتانسیل عملکرد یک ژنوتیپ مقاوم می تواند روش امیدبخش تری باشد به شرط اینکه تنوع ژنتیکی در داخل چنین ژنوتیپی وجود داشته باشد. برای دستیابی به ژنوتیپ های مقاوم به خشکی و پرمحصول می توان از انتخاب همزمان در محیطهای بدون تنش برای عملکرد و در شرایط تنش خشکی برای پایداری عملکرد استفاده کرد.

            روش اصلاحی بکار رفته برای مقاومت به خشکی همان روشی است که برای سایر اهداف اصلاحی استفاده می شود. بطور کلی، می توان از روشهای انتخاب شجره ای و بالک (دسته جمعی) برای اصلاح گیاهان خودگشن و از روش انتخاب دوره ای برای اصلاح گیاهان دگرگشن استفاده کرد. با این وجود، اگر هدف ما انتقال چند صفت مؤثر در تحمل به خشکی به یک ژنوتیپ پرمحصول باشد، تلاقی برگشتی روش مناسبی است. از طرف دیگر، تلاقی دو والدی (هاف سیب یا نیمه خواهری و فول سیب یا تمام خواهری) موجب حفظ پایه ژنتیکی وسیع شده و امکان تهیه ژنوتیپ های مطلوب مقاوم به خشکی را فراهم می سازد. با این حال، موفقیت هر برنامه اصلاحی، بویژه برای مقاومت به خشکی، بستگی به وجود روش مناسب ارزیابی یا غربال کردن دارد.

روشهای ارزیابی مقاومت به خشکی  

هر اقدامی برای اصلاح ژنتیکی مقاومت به خشکی با استفاده از تنوع ژتنیکی موجود نیاز به یک روش ارزیابی یا غربال کردن کارآمد دارد که باید سریع بوده و قادر به ارزیابی عملکرد گیاه در مراحل حساس رشدی و غربال کردن یک جمعیت بزرگ فقط با استفاده از تعداد محدودی مواد گیاهی باشد. همانطوری که قبلا اشاره شد مقاومت به خشکی نتیجه برهمکنش صفات مختلف مورفولوژیکی، فیزیولوژیکی و بیوشیمیایی است و بنابراین می توان از این اجزای مختلف به عنوان شاخصهای گزینش برای غربال کردن تیپ ایده ال (ایدئوتیپ) گیاهی استفاده کرد. بجای یک صفت ساده باید ترکیبی از صفات مختلف که رابطه مستقیم با مقاومت به خشکی دارند به عنوان معیارهای گزینش مورد استفاده قرار گیرد.

Ludlow  و Muchow (۶) مزیت صفات مختلفی را که باعث ایجاد مقاومت به خشکی می شوند رتبه بندی کردند.   McCreeو همکاران و Johnson و همکاران چارچوبی را تعیین کردند تا بر اساس آن بتوان ارزیابی کرد که چه ترکیبی از صفات در وضعیت آب و رشد گیاه مؤثرند و این می تواند فیزیولوژی را به برنامه جامع بهنژادی گیاهان پیوند بزند. اهمیت تهیه یک روش غربال کردن قابل اعتماد از مدتها قبل درک شده است. روشهای مختلفی که تاکنون برای غربال کردن مورد استفاده قرار گرفته اند عبارتند از:

۱ (استفاده از دماسنج مادون قرمز برای غربال کردن ژنوتیپ هایی که کارایی بالایی در جذب آب دارند.

۲ (پخش نواری علف کش متریبوزین در عمق معینی از خاک و استفاده از ید-۱۳۱  و کشت هیدروپونیک (آب کشتی) تحت تنش ۱۵ بار برای غربال کردن رشد ریشه.

۳ (استفاده از روش سایکرومتری برای ارزیابی تنظیم اسمزی.

۴) استفاده از پورومتر انتشاری برای اندازه گیری میزان هدایت آب برگ.

۵) استفاده از تکنیک مینی رایزوترون برای اندازه گیری میزان نفوذ، توزیع و تراکم ریشه در مزرعه با حداقل دست خوردگی.

۱) عکسبرداری هوایی مادون قرمز برای اندازه گیری میزان به تعویق افتادن آب کشیدگی.

۲) استفاده از تبعیض ایزوتوپهای کربن برای انتخاب ژنوتیپ های دارای راندمان مصرف آب بالا.

۳) از آنجایی که کاهش عملکرد نگرانی اصلی زارع می باشد متخصصین اصلاح نباتات بر عملکرد در شرایط تنش خشکی تاکید می کنند. از یک شاخص تنش خشکی که معیاری از خشکی را بر اساس کاهش عملکرد در شرایط تنش نسبت به شرایط بدون تنش فراهم می نماید برای غربال کردن ژنوتیپ های مقاوم به خشکی استفاده شده است. همچنین، از یک محیط تنش خشکی که بطور مصنوعی ایجاد شده است می توان برای انتخاب ژنوتیپ برتر از داخل یک جمعیت بزرگ استفاده کرد. رتبه بندی ظاهری یا اندازه گیری بلوغ، لوله ای شدن برگ، طول و زاویه برگ، شکل ظاهری ریشه و سایر خصوصیات مورفولوژیکی که ارتباط مستقیم با مقاومت به خشکی دارند نیز مورد توجه قرار گرفته اند.  

رهیافت بیوتکنولوژیکی برای مقاومت به خشکی  

از روشهای دست ورزی ژنتیکی در گیاهان زراعی برای شناسایی ژنهای مقاومت به خشکی و انتقال آنها استفاده شده است. اساسا" با استفاده از دو روش یعنی روش هدفمند و روش تصادفی می توان گیاهان تراریختی را تولید کرد که دارای مقاومت به خشکی هستند.

روش هدفمند

مسیرهای متابولیکی که شامل سنتز پلی آمین، کربوهیدرات، پرولین، گلیسین بتایین و ترهالوز می باشند با مقاومت به خشکی درارتباطند. در این روش که اساس آن متکی بر وجود اطلاعات لازم درباره واکنش بیوشیمیایی برای سنتز این متابولیتها می باشد ژنهای مربوطه را از منابع مختلف به گیاهان زراعی انتقال می دهند. این رهیافت دقیقتر و روشمند تر است و از احتمال موفقیت بیشتری نسبت به روش تصادفی برخوردار است.

            در سالهای اخیر، انتقال ژنهای القاء شده در شرایط تنش خشکی که در مسیرهای بیوشیمیایی مختلفی دخالت دارند، از منابع مختلف به گیاهان حساس به عنوان یکی از روشهای امیدبخش درآمده است. به عنوان مثال، ژن TPS1 که در مخمر یافت شده است فعالیت آنزیم ترهالوز-۶- فسفات سینتتاز را کنترل می کند و در بیوسنتز ترهالوز دخالت دارد. این ژن به توتون منتقل شده است. با اندازه گیری میزان هدررفتن آب از برگهای جداشده یا با تعیین اثر قطع آبیاری بر روی مرگ و آسیب دیدگی برگ معلوم شده است که گیاهان تراریخت دارای مقاومت به خشکی بالایی هستند. ژن دیگری بنام P5CS فعالیت آنزیم پیرولین-۵- کربوکسیلات سینتتاز را که در سنتز پرولین دخالت دارد کنترل می کند و تولید بالای پرولین مقاومت به خشکی را در پی دارد. توتون تراریختی که ِژن P5CS منتقل شده از باقلا را بیش از حد بیان می کرد مقدار بالایی از آنزیم مذکور را نشان داد و میزان تولید پرولین در آن  نسبت به گیاه شاهد ۱۸-۱۰ برابر بیشتر بود. تولید بیش از حد پرولین وزن تر ریشه و نمو گل در شرایط خشکی را افزایش داد .

            ژن باکتریایی SacB که در Bacillus subtilis  یافت می شود فعالیت لوان سوکراز را که در سنتز فروکتان دخالت دارد کنترل می نماید. زمانی که این ژن به توتون منتقل شد گیاه تراریخت حاصله تولید فروکتان نمود و در مقایسه با شاهد از عملکرد بالایی در شرایط خشکی ایجاد شده بوسیله پلی اتیلن گلیکول   (PEGبرخوردار بود.  ژنهای  betAو betB که به ترتیب فعالیت کولین دهیدروژناز و بتایین آلدهید دهیدروژناز را کنترل می نمایند در بیوسنتز گلیسین بتایین دخالت دارند و تجمع گلیسین بتایین مقاومت به خشکی را به گیاه می دهد(٨). Holmstrom و همکاران ژن betB را از باکتری  اشرشیا کولی به توتون منتقل کردند.

            با در دسترس بودن ژنهای مسئول بیوسنتز پلی آمین مانند ADC (که فعالیت آرژنین دهیدروژناز را کنترل        می کند)، ODC (که فعالیت اورنیتین دکربوکسیلاز را کنترل می کند) و SAMDC (که فعالیت اس-آدنوزیل- متیونین دکربوکسیلاز را کنترل می نماید)، اکنون می توان میزان پلی آمین را با استفاده از سازه های همسو و ناهمسوی این ژنها در گیاهان تراریخت دستکاری کرد. گیاهان توتون که با انتقال ژن ODC از مخمر و موش، ژنADC  از چاودار و ژنSAMDC  از انسان، تراریخت شده اند گزارش گردیده اند اما در مورد اینکه آیا گیاهان تراریخت تحمل به خشکی نشان می دهند یا نه مطالعات کافی صورت نگرفته است. فقط میزان بیان پلی آمینها در گیاهان مورد مطالعه قرار گرفته است. با این وجود، ژن SOD (سوپراکسیداز دیسموتاز) از نخود فرنگی به توتون منتقل شده و گیاهان تراریخت مقاوم به خشکی بدست آمده است. 

روش تصادفی

در این روش که روشی غیر مستقیم برای بدست آوردن ژن مورد نظر می باشد تغییراتی که در فرایند سلول و بیان ژن در اثر تنش خشکی ایجاد می شود مورد تجزیه و تحلیل قرار می گیرد. ژنهایی که تحت تنش خشکی بیان  می شوند و هیچ نقش خاصی برای آنها پیدا نشده است شناسایی شده اند. اگرچه این روش از دقت کمی برخوردار بوده و احتمال موفقیت در آن پایین است اما می تواند حتی موقعی که هیچ اطلاعات قبلی درباره ژن یا فراورده ژنی وجود ندارد کارساز باشد. بنابراین، به نظر میرسد که روش تصادفی به علت وجود اطلاعات کافی درباره تغییرات بیوشیمیایی در سلول، انتخاب بهتری برای مقاومت به خشکی می باشد. به عنوان مثال، برنج تراریخت حامل ژن hva1 جو که با این روش تولید شده مقاومت به خشکی نشان داده است (٨). ژن hva1  سنتز یک گروه سه پروتئینی LEA (پروتئینهای فراوان در اواخر جنین زایی) را که در طی دوره تنش در اندامهای رویشی انباشته می شوند کنترل می کند.

            روش کشت بافت نیز دارای قابلیت ایجاد تنوع سوماکلونال برای مقاومت به خشکی می باشد اما مشکلاتی که در انتخاب واریانت مورد نظر وجود دارد استفاده از این روش را محدود می سازد.

انتخاب به کمک نشانگر

در اغلب برنامه های اصلاحی، اصلاح ژنتیکی مقاومت به خشکی از طریق انتخاب برای عملکرد صورت می گیرد ولی به علت وراثت پذیری پایین عملکرد تحت شرایط تنش و تغییرات زمانی و مکانی در محیط مزرعه، روشهای سنتی اصلاح نباتات از سرعت کندی برخوردار بوده است. نشانگرهای مولکولی مانند چندشکلی در طول قطعات حاصل از برش آنزیمی  DNA (RFLP)، DNA چندشکل حاصل از تکثیر تصادفی (RAPD) و آیزوزایم ها موجب افزایش کارایی در تهیه ژنوتیپ های مقاوم به خشکی می گردد زیرا بیان آنها مستقل از اثرات محیطی است.

            بعد از شناسایی نشانگرهای مولکولی که با عملکرد یا سایر صفات مورفولوژیکی مرتبط با مقاومت به خشکی درارتباطند می توان از آنها به عنوان معیارهای گزینش برای مقاومت به خشکی استفاده کرد. انتخاب به کمک نشانگر در تهیه ژنوتیپ های مقاوم به خشکی به کار رفته است. بطور مثال، نشانگرهای RFLP مرتبط با تنظیم اسمزی، دوام سبزینگی و صفات ریشه شناسایی شده است.

محدودیت ها

 پژوهشگران تعداد بسیار زیادی صفت مرتبط با مقاومت به خشکی را پیشنهاد کرده اندکه می توان از آنها در انتخاب برای مقاومت به خشکی استفاده کرد و تنوع ژنتیکی نیز برای آنها در گیاهان مختلف وجود دارد اما میزان موفقیت در دستیابی به ژتونیپ های مقاوم به خشکی پایین است. این عدم موفقیت احتمالا ناشی از مجموعه ای از عوامل زیر است):

۱) عدم وجود یک رهیافت چند بخشی برای درک واکنشهای تلفیقی گیاه به تنش خشکی و پیچیده بودن کنترل ژنتیکی مکانیزم های مختلف مقاومت به خشکی. 

 ۲) عدم وجود روشهای غربال کردن دقیق و تکرار پذیر.

۳) درباره صفات قابل اعتمادی که بتوان به عنوان شاخصهای مقاومت به خشکی استفاده کرد و همچنین معیارهای گزینش و تاثیر محیط بر روی صفات مرتبط با خشکی اطلاعات کاملی وجود ندارد.

۴) به نظر می رسد سازگاری های مختلفی که موجب کاهش هدر رفتن آب در شرایط تنش خشکی می شوند دارای اثر منفی بر روی عملکرد هستند. به عنوان مثال، لوله ای شدن برگ و بسته شدن روزنه ها هر دو آب گیاه را حفظ می کنند اما میزان جذب نور و ورود دی اکسید کربن به درون برگ را محدود می سازند و اینها به نوبه خود عملکرد را کاهش می دهند. بنابراین، این صفات برای اصلاح مقاومت به خشکی مفید نیستند.

۵) خشکی جذب عناصر غذایی را کاهش می دهد و با تنش گرمایی و در ارتفاعات با تنش سرما ارتباط دارد. این ارتباط برنامه اصلاحی را پیچیده تر می کند.

۶) علی رغم اهمیت راندمان مصرف آب و وجود تنوع ژنتیکی برای این صفت، انتخاب برای راندمان مصرف آب بالا غالبا با کاهش میزان رشد گیاه همراه است. در اغلب موارد، گیاهان راندمان مصرف آب را از طریق کاهش تعرق افزایش می دهند. از آنجایی که تولید ماده خشک رابطه قوی با تعرق کل دارد هر کاهشی در تعرق منجر به کاهش میزان رشد گیاه می گردد.

۷) محدودیت بکارگیری مهندسی ژنتیک در این زمینه به نبود اطلاعات کافی درباره مناسب ترین ژن برمی گردد.

راهکارهای آینده

برنامه های تحقیقاتی آینده برای مقاومت به خشکی باید راهکارهای زیر را مدنظر قرار دهد:

۱) هرچه سریعتر لازم است ذخایر ژنتیکی گیاهان برای صفات مرتبط با مقاومت به خشکی مورد جستجو قرار گیرد و خصوصیات آنها شناسایی شود تا امکان انتقال صفات مطلوب از طریق روشهای سنتی اصلاح نباتات یا بیوتکنولوژی فراهم گردد.

۲) یک صفت تنها نمی تواند مقاومت به خشکی را در حد رضایت بخشی به گیاه اعطا نماید. بنابراین، هدف برنامه اصلاحی برای مقاومت به خشکی باید جمع آوری تعدادی صفت مرتبط با مقاومت به خشکی در یک گیاه باشد.

۳) دست ورزی ژنتیکی فقط توانسته گیاهانی را ایجاد نماید که در تمام موارد تنها با یک ژن تراریخت شده اند. بنابراین، لازم است تعداد زیادی ژن مختلف را که مسئول بیوسنتز مواد محلول سازگار و اسمولیت های مختلف مرتبط با مقاومت به خشکی هستند بطور همزمان به یک گیاه زراعی منتقل کرد.  

۴) درک بهتر اساس ژنتیکی مقاومت به خشکی از طریق تکنیک RNA نا همسو باید مورد توجه قرار گیرد، تکنیکی که در آن اثر میزان بیان آنزیمها یا پروتئینهای مختلف در مسیرهای بیوشیمیایی مختلف بر روی مقاومت به خشکی مورد مشاهده قرار می گیرد.

۵) بعضی از پروتئینها مانند LEA، دهیدرین و غیره در شرایط تنش خشکی سنتز شده و در بافتهای گیاهی انباشته می شوند. می توان با مقایسه ژنوتیپ های حساس و متحمل به خشکی از نظر پلی پپتیدهای مختلفی که در پاسخ به تنش خشکی تولید می شوند یک نشانگر پروتئینی را شناسایی کرد که می تواند به تولید گیاهان تراریخت مقاوم به خشکی کمک نماید.

۶) یک رهیافت چند بخشی که شامل ژنتیک، بیوشیمی، بیوتکنولوژی، فیزیولوژی، اصلاح نباتات و زراعت می باشد برای ارزیابی واکنش پیچیده و تلفیقی گیاهان به تنش خشکی و تهیه ژنوتیپ های برتر مقاوم به خشکی مناسب خواهد بود.

بنیه بذر (seed vigor)

1 . در فرآیندها و واکنش های بیوشیمیایی در مدت جوانه زنی (مثل واکنش های آنزیمی و فعالیت های تنفسی).

2 . سرعت و یکنواختی جوانه زنی بذر و رشد گیاهچه .

3 . سرعت رشد گیاهچه و رشد در مزرعه .

4 . توانایی سبز شدن گیاهچه در شرایط نامساعدمحیطی.

عوامل مؤثر بر بنیه بذر:

ساختار ژنتیکی بذر-شرایط تغذیه ای ومحطی گیاه مادری –شرایط مرحله رسیدگی بذر –اندازه،وزن و وزن مخصوص بذر –خسارت مکانیکی-زوال بذر-عمرزیاد بذر –پاتوژن ها.

نموبذر تحت تأثیر از مجموعه ای از مراحل مهم رشد از لقاح گرته تا تجمع مواد غذایی می باشد، مرحله ای که بذربالاترین ماده خشک را داراست یعنی مرحله رسیدگی فیزیولوژیکی بذر دارای حداکثر توانایی جوانه زنی و حداکثر بذر است.

ساختار ژنتیکی :

معمولأ در طی کارهای اصلاحی به مواردی همچون مقاوم نمودن به بیماری ها و آفات ،افزایش میزان پروتئین ،افزایش اندازه بذر ، سلامت مکانیکی بذر ، بهبود پوسته بذر پرداخته می شود که در بنیه بذر بسیار مؤثرند کارهای اصلاحی نظیر افزایش لیسین (لایسین) در ذرت بنیه بذر را افزایش می دهد پس هرگونه کار تصلاحی برای کیفیت بذر می تواند در بنیه بذر مؤثر باشدحتی در طی کارهای اصلاحی محققان دریافتند که ژن های مختلفی در آندوسپرم وجود دارند که جوانه زنی را در دماهای مختلف ، تحت تأثیر قرار می دهند مثلأ در یافتند که بذوری که دارای ژن I1 در آندوسپرم خود می باشند دارای بنیه بذر بیشتری نسبت به بذوریکه فاقد ژن هستند می باشند .

اثر عوامل محیطی هنگام نمو بذر :

1 . رطوبت و حاصلخیزی خاک: تنش رطوبتی در هنگام نمو بذر باعث ضعیف شدن و چروکیدگی بذر می شود که باعث کاهش بنیه بذر می شود با کمبود حاصل خیزی خاک نیز تشدید می شود مثلا کود نیتروژن باعث افزایش پروتئین بذر و در نتیجه افزایش جوانه زنی و بنیه بذر می شود .

2- بلوغ بذر : عوامل محیطی طی دوران پس از بلوغ بذر تا برداشت :

زوال بذر در اثر عوامل محیطی نظیر رطوبت بالا ،  باران های پیاپی در درجه حرارت گرم ، سرمای زیاد و ... باعث کاهش سریع در بنیه بذر می گردد .

آزمایشهای بنیه بذر :

در این آزمایشات می توان بسیاری ازعلائم زوال بذر را تشخیص داد ، آزمون های بنیه بدر یکی از شاخص های بسیار حساس کیفیت بذر نسبت به آزمون های جوانه زنی است ، هر پدیده ای که سرعت جوانه زنی را بیشتر کاهش دهد می تواند به عنوان مبنا در آزمون های بنیه بذر بگیرد شروع کاهش جوانه زنی با اضمحلال غشاء همراه است ، غشاء ها برای بسیاری از اعمال متابولیکی بذر ضروری اند مثل تنفس شبکه آندوپلاسمیک نیز یک اندام غشائی است که بر روی آن ترجمه ی اسید های نوکلئیک انجام می شود و آنزیم های متعددی را تشکیل می دهد بنابراین هر گونه خرابی در اعمال غشاء می تواند ATP یا منبع انرژی را کاهش دهد و به دنبال آن سنتز آنزیم های ضروری برای رشد را به تعویق بیاندازند ، میران ATP و تنفس در اثر انبار داری ، پیری زود رس و یا پیری معمولی کاهش می یابد.  پیامد کاهش تنفس می تواند کاهش سرعت جوانه زنی ، افت خاصیت انبار داری و کاهش مقاومت نسبت به بیماری ها را به همراه دارد که نتیجه تمام این ها کاهش بنیه بذر است .

به طور عموم آزمایش های بنیه بذر را به دو دسته فیزیولوژیکی و بیو شیمیایی تقسیم می کنند :

آزمایش های فیزیولوژیکی : برخی از جنبه های جوانه زنی و رشد گیاهچه را اندازه گیری می کنند و آزمایش های بیوشیمیایی واکنش های شیمیایی خاص را اندازه گیری می کنند مثل فعالیت های آنزیمی و تنفسی .

آزمون سرما:

یکی لز قدیمی ترین روشهاست وبیشتربرای بذور ذرت و سویا بکار می رود بذور را در خاک یا محیط ورمی کولیت بمدت معینی در معرض سرما قرار می دهند در بذر ذرت هفت روز در دمای 10 درجه سانتیگراد)

در طی این مدت تنش هایی از نظر آماس ، درجه حرارت و میکرو اورگانیسم ها را بربذر اعمال می کنند بعد از این تیمار سرما بذور را در شرایط مساعد محیطی قرار داده تا جوانه بزنند (در ذرت در دمای 25 درجه قرار داده و بعد از 4 روز جوانه ها را می شمارند).

بزرگترین مشکل این روش می تواند عدم یکنواختی در خاک مزرعه باشد که برای حل آن می توان از محیط ورمی کولیت با اندازه دانه متوسط استفاده کرد و از محلول های غذایی برای تغذیه استفاده نمود.

استفاده از رفرنس نویسی در ورد 2007 (word 2007)

منابع: ایران کنفرانس و آی اس آی ژورنال

استفاده از رفرنس نویسی در ورد 2007 ( word 2007)

دفعات اولی که مقالات زبان انگلیسی رو بررسی و مطالعه می کردم، با خودم می گفتم طرف چقدر حوصله داشته و اینقدر منابع رو دقیق و با جزئیات تمام وارد کرده است و حتی، نام تمام مجلات و کتابها را ایتالیک کرده است؛ فکر می کردم که این خود مولف است که این کار را انجام می دهد و خود مولف تمام مراجع را تک تک (هم داخل متن و هم در انتها) کنترل می کند. چون واقعاً اصلا اشتباهی وجود نداشت و همه مراجع دقبق هم در متن و هم در انتها، خیلی زیبا و در قالب مناسب ارایه شده اند.

وقتی با نرم افزار ورد 2007 آشنا شدم، متوجه شدم که غیر از خود ورد، نرم افزارهای تخصصی دیگری نیز برای مرجع نویسی وجود دارد که  مهمترین آنها End Note و Reference Manager است که کار مرجع نویسی را خیلی راحت می کند، حتی به شما می گوید که کدام منبع را در داخل متن استفاده نکردید. خود نرم افزار هر جا را که لازم باشد، اول می آورد یا هر جا را که لازم باشد ایتالیک می کند. به این ترتیب به لیست رفرنس حرفه ای برای شما ایجاد می کند.

اطلاعات مربوط به این نرم افزارها را توی سایتشون می تونید پیدا کنید. نرم افزارهای فوق پولی هستند  و به همین دلیل در دسترس همه نیستند. اما نرم افزار ورد 2007 در دسترس همه هست. به همین دلیل، در این پست، مرجع نویسی با این نرم افزار توضیح داده می شود.

چهارمین Tab در قسمت بالای ورد 2007 و از سمت چپ، References است. هرجا که خواستید از یک رفرنس استفاده کنید، آنجا کلیک کنید، آنگاه از توی این تب، قسمت Citation & Bibliography را انتخاب کنید.


 

روی قسمت Insert Citation کلیک کرده و بعد از آن، گزینه Add New Source را انتخاب کنید.


 

 

پنجره ای باز می شود که شما باید اطلاعات مربوطه را تکمیل کنید؛ این اطلاعات با توجه به اینکه منبع مجله، کتاب، سایت و یا کنفرانس است فرق می کند. اطلاعات را تکمیل کنید، آنگاه کلید Ok را انتخاب کنید. به این نمونه توجه کنید:

قسمت دیگر Style است؛ این قسمت شما مهمترین استانداردهای رفرنس نویسی را می توانید ببینید. APA یا همون انجمن روانشناسی آمریکا، Chicago، ISO، MLA و سایر انواع که فراخور نیاز، از هر کدام می توان استفاده کرد که ما در کارهای فارسی از شیکاگو و در مقالات انگلیسی از APA استفاده می کنیم. هر استایلی را که انتخاب کنید، فرمت اون استاندارد هم توی متن و هم در انتها خودبه خود تغییر می کند.

که بعنوان نمونه» مرجع نویسی در داخل متن به شکل زیر می آید:

(Richard Laux, Richard, & Karen, 2007)

که اگر شما روی آن کلیک کنید برجسته می شود؛ یک فلش در سمت چپ نشان داده می شود که اگر روی آن کلیک کنید، می توانید شماره صفحه را نیز وارد کنید. دقت کنید که همه این موارد در ورد 2007 است؛ اگر شما مقاله را در فایل ورد 2003 ذخیره کرده باشید (فرمت doc و نه فرمت docx)، این چیزهایی که گفتم اتفاق نمی افتد، یعنی شما با نرم افزار 2007 کار می کنید، اما فایل 2003 است، اینجا این کارها انجام نمی شود، فایل را از ابتدا 2007 ذخیره کنید. نشانه اینکه 2003 است یا 2007، این است که در قسمت عنوان در بالاترین قسمت صفحه، واژه Compatibility Mode می اید.

آنگاه بعد از اتمام مقاله، به روی قسمت Bibliography کلیک کنید و از انجا گزینه Insert Bibliography را انتخاب کنید. 


 


 

تمام رفرنسهایی را که تا آلان وارد کرده اید را به شکلی زیبا به شما می دهد

در قسمت Manage Sources نیز می توانید ببینید که کدام رفرنسها تیک نخورده اند، یعنی توی متن استفاده نشده اند.


 

 یکی از اساتید می گفت که من وقتی می خواستم یک مقاله را داوری کنم، تک تک مراجع را هم در متن و هم در انتها کنترل می کردم، تصور کنید که چه زمانی می برد این کنترل کردن؟ در صورتی که یک نرم افزار به راحتی این کار را انجام میدهد. در این قسمت، می توانید مراجه را اصلاح، کپی یا حذف کنید. نکته مهم دیگه اینکه این رفرنس هایی که وارد فایل ورد کرده اید، توی دیتابیس ورد در همان کامپیوتر باقی می ماند و شما اگر در آینده به آنها نیاز داشته باشید، می توانید آنها را کپی کنید.

 

 

منبع :Plant Breeding

ادامه نوشته

دستورالعمل نگارش و تدوین پایان نامه کارشناسی ارشد

http://adp.iaus.ac.ir/Upload/Dept/abe/AdminFolder/WebSiteFolder/Arshad-Metodologi-2.pdf

نحوه تنظیم اسامی و آدرس مولفین

http://adp.iaus.ac.ir/Upload/Dept/abe/AdminFolder/WebSiteFolder/Affiliation.pdf